;’?ﬁ /"/4

Compound stresses

D'YJ Tﬂ i

—

Cssﬂfmc pf;ef/v D'—‘-‘ﬁla b _\__),

in Eq. 6-10 the sum of the normal stresses must equal the axial force P.
Noting that in the elastic zone the stress can be expressed algebraically
as 0 = (oyp(3) — [Boypy/(3h)] and that in the plastic zone ¢ = oyp, one
has

\ ' +hi2 g - 8}’ —hl4 bh
{Zﬂ(ﬂﬁ*"\o/,— P2=A6d4= T I—I bd_y—l— vabdy=0v92'

MM yp

Fully plastic

—h/a —nf2

+hi2 - 8}, —hf4
My=—| opdAd = — —{1 —=| ybdy — oypyb dy
A —nla 3 h —ni2

3 2
= '1—6' prbh
Note that the axial force found above exactly equals the force acting on
the plastic area of the section. The moment M, is greater than Myp =
oypbh?[6 and less than M, = Mp = oypbh?/4 (see Eq. 6-12).

The axial force and moment corresponding to the fully plastic -
case shown in Figs. 8-5(¢) and (f) are simple to determine. As may be
seen from Fig. 8-5(¢) the axial force is developed by oyp acting on the
area 2y,b. Because of symmetry, these stresses make no contribution to
the moment. Forces acting on the top and the bottom areas ab =
[(7/2) — y;1b, Fig. 8-5(d), form a couple with a moment arm ofh —a =
(#/2) + y;. Therefore

P3 = zylbayp or y]. — P3/(2b0’}3))

R 7 - SR, W -
and My = aboyy(i —a) = prb("z — yf) = Mp — aypby}
_3My P} ’
2 dboyy

Then dividing by My = 3Myp/2 = oypbhi*[4 and simplifying, one obtains

2M"’+(P'°‘)2—1 (8-4)
3Myp Pyp - '

This is a general equation for the interaction

curve for P and M necessary to achieve the fully

plastic condition in a rectangular member (see
: ST Fig. 8-6). Unlike the equation for the elastic

Id - : -

At impending yie case, the relation is nonlinear.

8-3. SKEW BENDING

In Chapter 6, on the flexure of beams, it was
emphasized that the derived flexure formula is

PIPyp applicable only if the bending moment acts around

Fig. 8-6. Interaction curves for P and M

1.0 one or the other of the principal axes of the cross
section. Since the plane of the applied moment M

for a rectangular member may be inclined with respect to the principal axes,
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(b)

in the planes of principal axes.

—it-is-necessary to consider a more general case. Such a case is shown in
Fig. 8-7(a) and is called skew bending.* The bending plane of M is located
» by an angle « which is positive when measured from the ¥ axis toward the
z axis in a counterclockwise direction. :

~ To solve the stated pfoblem, the applied moment M is resolved
into two components acting in 'the planes of the principal axes. For the
negative o shown in Fig, 8-7(a), the bending moment components acting
around both the z and the'y axes are positive (see Fig. 2-2). The one
around the z axis is M cos «, and the one around the y axis is M sin a.
- Figures 8-7(b) and (c) show alternative representations of these positive
moment components. :

The elastic flexure formula previously derived can be applied to
each one of the moment components acting around a principal axis, and
‘the combined stress follows by superposition. An example of super-
position is in Fig. 8-8, where for simplicity a rectangular section is shown.
Analogous results hold true in general and one hast

*In many books such bending is called unsymmetrical. However, as the
problem considered is more general than something lacking symmetry, the
word skew is used in this text. This corresponds to the use of the words schiefe
-in German and kosoi in Russian, which mean. inclined or skew.

T It is possible to derive the flexure formula for arbitrarily directed yand z axes.
Such a formula, equivalent to Eq. 8-5, is

. MzzImr _ Mys’Iyz Myvlzz - Mzzlyz
O = Iyufzz S Y lezz - 152

vz

{8-5a)

where I,, and I, are moments of inertia, and I,, is the product of inertia. For
principal axes, I,, = 0, and the above equation reverts to Eq. 8-5. For further
details see, for example, D. J. Peery, Aireraft Structures (New York: McGraw-
Hill Book Company, 1950).
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Fig. 8-7. (a) Bending moment in a plane which does not coincide
with either principal axis; (b) and (c) bending-moment components
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Fig. 8-8. Superposition of elastic bending stresses.
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M,y M,z
O = = —T””'— + -Ii (8-5)

-2 ¥y -

where the subscripts yy and zz on M and I refer to the respective principal -
axes of the cross-sectional area-around which bending takes place. Note-
that the first term on the right side giving the stresses caused by bending -
around the z axis is negative just as Eq. 6-3 from which it comes. On the *
other hand, the second term, although analogous to Eq. 6-3, is taken

~ positive to obtain the correspondence in sign between the normal stresses =

and the sense of the positive moment acting around the y axis. On this
basis, in applying Eq. 8-5, if positive signs are associated with all quantities

“in conformity with the coordinate axes, positive results indicate tensile

stresses; negative, compressive stresses. In most problems by thinking in -
terms of the physical action on the member, one can directly assign the
sign of each term in Eq. 8-5, although the availability of the sign con-
vention is desirable. ‘

If, in general, the applied moment M acts in a plane making a
positive angle o with the y axis, the bending-moment components are
M,, = —Msino and M,, = M cos ¢, and Eq. 8-5 can be stated as

Op = ——M(—y— cos o - ;z_“ sin a) (8-6)
25 vy
From this relation an equation locating the neutral axis can be found by
setting o, = 0. This yields

y= —Z(Iz'z/‘{w) tan o (87
262




study of this equation using the procedures of analytic geometry shows
for skew bending, unless 7, = I, the neutral axis is not per-
‘pendicular to the plane of the applied moment. The neutral axis is,
owever, a straight line, and the “plane-section’ rotates around it. As in
symmetrical bending, the largest stress occurs at the most remote point
m-the-neutral-axis: Note, however,-that in skew bending the neutral
does not coincide with either one of the principal axes and it is not
located at-right.angles to the bending plane. :
- The analysis of inelastic beams for skew bending is very cumber-

i s i beyond the scope of this text¥

EXAMPLE #4

_A din.-by-G-in. (actual size) wooden beam shown in Fig. 8-9(a) is used
to-support a uniformly distributed load of 1,000 Ib (total) on a simple
“span of 10:ft. “The applied load acts in-a plane making an angle of 30°

'—LMr*Smf‘gghbabialran'de:’P?PGW\T,""Unsymmétrlcal. Bending of Rectangular

Mechanics, 195 pp_.y5;7..’9_f784l‘(p_l_1_b1i_s_hed byrASME).

. eyond. the: Elastic Limit,” Proceedings, First U.S. National Congress

—1,010 psi

+74 psi
)

, 263

Section §-3
Skew bending

(2)




Chapter 8
Compound stresses

with the vertical, as shown in Fig. 8-9(b} and again in Fig. 8-9(c). Cal-
culate the maximum bending stress at midspan, and, for the same section,
locate the neutral axis. Neglect the weight of the beam.

SOLUTION

The maximum bending in the plane of the applied load occurs at the
midspan, and according to Example 2-6 it is equal to poL*8 or WL/S,
where W is the total load on the span L. Hence

M = WL{8 = 1,000(10)/8 = 1,250 fi-lb

Here « = —30°, and the moment components acting around
their respective axes are

M,, = Mcos o« = 1,250(V3/2)12 = 13,000 in-Ib
M,, = —Msin o = —1,250(—0.5)12 = 7,500 in-1b

By considering the nature of the flexural stress distribution about both
principal axes of the cross section, one may conclude that the maximum
tensile stress occurs at 4. The value of this stress follows by applying
Eq. 8-5 with y = ¢, = —3 in., and z = ¢, = +2 in. Stresses at the
other corners of the cross section are similarly determined.

Me;  Mye,  13,00003) N 7,500(2)
4 T, I, 46PN2 " 6@z

M

+542 + 468 = +1,010psi  (tension)

oy = +542 — 468 = +74 psi (tension)
oo = —542 — 468 = —1,010 psi ~ (compression)

ap = —542 + 468 = T4 psi (compression)

To locate the neutral axis the stress distribution diagrams along ...

the sides in Fig. 8-9(d) or (f) can be used. From similar triangles,
al(6 — a) = 74/1,010, or a = 0.41 in. This locates the neutral axis in
Fig. 8-9(¢). "Alternatively, Eq. 8-7 with « = —30° can be used.

When skew bending of a beam is caused by applied transverse
forces, as in the above example, an equivalent procedure is usually more
convenient. The applied forces are first resolved into components which™
act parallel to the principal axes of the cross-sectional area. Then the
bending moments caused by these components around the respective axes
are computed for use in the flexure formula. For the above example, such
components of the applied load are shown in Fig. 8-9(g). To avoid
torsional stresses the applied transverse forces must act through the shear
center. For bilaterally symmetrical sections, e.g., a rectangle, a circle, an
I beam, etc., the shear center coincides with the centroid of the cross
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Shear center

Principal axes

(2) ' (b)

section. For other cross sections, such as channels, angles, Z sections, etc.,

verse foice must be applied at the shear center to avoid torsional stresses.
This approach is illustrated in Fig. 8-10. Otherwise, in addition to the
bending stresses, the torsional stresses must be investigated. In such
cases the applied torque equalsithe applied force multiplied by its moment
“arm measured from the shear center.

8-4. ECCENTRICALLY LOADED
MEMBERS

Occasionally situations arise where a force P acting parallel to the,
axis of the member is applied eccentrically with respect to the centroidal
_axis of the member, Fig. 8-11(a). By applying two equal and opposite
___forces P at the centroid, as shown in Fig. 8-11(b), the problem is changed
to that of an axially applied force P and skew bending in the plane of
the applied force P and the axis of the member. "This skew bending
moment can be further resolved into the components M,, = Pz, acting
around the y axis, and M,, = —£¥, acting around the z axis, Figs. 8-11(d)
and (e). Then, the compound normal stress at any point (y, 2) of the cross
section, for an eccentrically loaded member, can be found by simply
adding an axial stress term to Eq. 8-5. Hence

(8-8)
‘ A v Izz I‘yy

where P is taken positive for tensile forces. The remainder of the sign
convention is the same as that for Eq. 8-5. Providing the y and the z axes
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& sheat center lies elsewhere (see Art. 7-7). In such problems the trans-

(©)

Fig. 8-10. Forces applied through shear center cause no torsion.




Fig. 8-11. Resolution of a problem into three problems, each one
of which may be solved by the methods previously discussed.

are the principal axes, Eq. 8-8 is applicable to prismatic members of any

cross-sectional shape.
For a given loading condition Eq. 8-8 can be rewritten as

o,=A+ By+ Cz (8-9)

where A, B, and C are constants. This is seen to be an equation of a plane;
it clearly shows the nature of stress distribution. For the linearly elastic
case under discussion, dividing through Eq. 8-9 by the elastic medulus £
recovers the basic kinematic assumption of the technical theory, i.e.,

& = d -+ by + ¢z (8-10)
where a, b, and ¢ are constants.
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In some eccentrically loaded members it is possible to Jocate the
line of zero stress within the cross-sectional area of a member by determin-
ing a line where o, = 0. This line is analogous to the neutral axis occurring
in pure bending. Unlike the former case, however, with P 5 0 this line
does not pass through the centroid of a section. For large axial loads and
small moments, it lies outside the cross section. Its significance lies in the
fact that the normal stresses vary linearly from it.

This method is applicable for compression members providing
their length is small in relation to their transverse dimensions. Slender bars
in compression require special treatment (Chapter .14). Also, near the
--point-of-application of the force, the analysis deveioped here is incorrect.
There the stress distribution is greatly disturbed and is similar fo a local
stress concentration (see Art. 4-18 and especially Fig. 4-30).

EXAMPLE 85

Find the stress distribution at the section ABCD for the block shown in
Fig. 8-12(a) if P = 14.4 kips. ‘At the same section, locate the line of zero
stress. Neglect the weight of the block.

_.SOLUTION

The forces acting on the section ABCD, Fig. 8~5(c), are P = —14.4 kips,
M,, = —14.4(6) = —86.4 kip-in,, and M,, = —144(3 + 3) = —864

Section 8-4
FEccentrically loaded
members

(c) (d)
| Fig, 8-12

267

Line of zero stress




Chapter 8
Compound stresses

268

kip-in. The cross section of the block A4 = 6(12) = 72 in.%, and the re-
spective section moduliare S, = 12(6)%/6 =72 in2and S, = 6(12)%/6 =
144 in.3 Hence, using a relation equivalent to Eq. 8-8 gives the compound
normal stresses for the corner elements:

P My My _ 144 864 864 o
AT s Es, T T T T T M EETR

Here the units of stress are kips per square inch. The sense of the forces
shown in Fig. 8-12(c) determines the signs of stresses. Therefore, if the
subscript of the stress signifies its location, the corner normal stresses
are:

o4 = --02+12~06=—20ksi

op = —02 ~12 +0.6 = —0.8 ksi
6p = —0.2 + 1.2 + 0.6 = -+1.6 ki
op = —0.2 + 1.2 — 0.6 = +0.4 ksi

These stresses are shown in Fig. 8-12(d). The ends of these four stress
vectors at A’, B, C’, and D’ lie in the plane A"B’'C’D’. The vertical
distance between the planes ABCD and 4'B'C’D’ defines the compound
stress at any point on the cross section. The intersection of the plane
A’B'C’'D’ with the plane ABCD locates the line of zero stress FE.

By drawing a line B'C” parallel to BC, similar triangles C"B°C”.- -

and C’EC are obtained: thus the distancg CE = {1,6/(1.6 4 0.8)]6 = 4

in. Similarly, the distance AF is found.to be 5 in. Points E'and Flocate
the line of zero stress. o

EXAMPLE 8-6 .
Find the zone over which the vertical downward force P, may be applied

to the rectangular weightless block shown in Fig. 8-13(a) without causing
any tensile stresses at the section A-B.

SOLUTION

The force P = —P, is placed at an arbitrary point in the first quadrant
of the y-z coordinate system shown. Then the same reasoning used in
the preceding example shows that with this position of the force the
greatest tendency for a tensile stress exists at 4. With P = —P,, M, =
+P,y and M,, = —P,z, setting the stress at 4 equal to zero fulfills the
limiting condition of the problem. Using Eq. 8-8 allows the stress at 4
to be expressed as:

6. =0 = (=P, (Poy)—b[2) N (—P2)(—hf2)
40 4 L, I,

P, Py P,z
~ 7 Ve T ige = °

or




(b)
Fig. 8-13

Simplifying [z/(%/6)] + [y/(b/6)] = 1, which is an equation of a straight
line. It shows that wher _z = 0, y = b/6; and when y =0, z = hf6.

i
i
i

Hence this line may be represented by the line CD in Fig. 8-13(b). A

~vertical force may be applied to the block anywhere on this line and the

stress at A will be zero. Similar lines may be established for the other
three corners of the section; these are shown in Fig. 8-13(b). If the force
P is applied on any one of these lines or on any line parallel to such a
line toward the centroid of the section, there will be no tensile stress at the
corresponding corner. Hence the force P may be applied anywhere
within the shaded area in Fig. 8-13(b) without causing tensile stress at
any of the four corners or anywhere else. This zone of the cross-sectional
area ig called the kern of a section.

If for a rectangular block the location of the force P is limited
to one of the lines of.symmetry, the maximum eccentricity e = 2/6 to
give zero stress along one of the edges, Figs. 8-14(a) and (b). This leads
to a practical rule, much used in the past by designers of masonry
structures: If the resultant of vertical forces acts within the middle third
of a rectangular section, there is no tension in the material at that section.
If, further, the applied load P acts outside the middle third and the
contact surfaces cannot transmit tensile forces, one has the case shown in
Figs. 8-14(c) and (d). Here, assuming elastic action, the normal stress at
B may be expressed as

where (xf2)} — a is the eccentricity of the applied force with respect to
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Fig, 8-14. (a) Eccentrically loaded block; (b).. loéaii,,
cause zero stress at B; (c) elastic stIess dlstnbution b

—In probleﬁiS“WherUbUth the elastic-
torsional and dlrect shear:ng stresses can be_determinied; the compound ™
shearing stress also may be found by superpos1t10n This corlesponds to
superposition.of the_off-diagonal stresses in Eq. 8-1.. Here attention will
be directed to instances where the shearing stresses being superposed not
only act on the same elemeit of area but also have the same line of action.*
Only elastic stresses fall within the scope of this treatment.

* Noncolinear shearing stxesses actmg on the same element of area can be
added vectorially.
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walls) have sufficient stiffness to restrain the tops and bottoms of columns so they can be clas-
sified as braced elements. If a designer is uncertain as to the effectiveness of bracing elements,
ACI Code §10.11.4 provides two quantitative criteria, only one of which must be satisfied:

Method 1. Columns in a given story may be considered braced or nonsway elements if the
column end moments produced by a second-order structural analysis are not more that 5
percent larger than the moments predicted by a first-order analysis. A first-order analysis
is based on the initial geometry of the structure and assumes behavior is elastic. A second-
order analysis, which is more complicated, includes the influence of joint displacements
and changes in geometry on the forces in structures. Today more and more computer
programs have the capability to carry out both a first- and second-order analysis. If lateral
displacements are small, both types of analysis produce about the same results.

Method 2. A story may be considered braced if:

EPHAG
Vil

where 3P, and V, = the total vertical load and story shear, respectively, in the story
being investigated
I, = the length of column, measured from center to center of joints
Ag = the relative lateral deflection between the top and bottom floors of
the story due to V,, computed using a first-order elastic analysis,
In this analysis, ACI Code §10.11.1 specifies that the influence of
flexural cracking, creep, and other factors on member stiffness be
accounted for by using reduced values of moment of inertia based
on the gross area of the cross section, i.e., 0.70/, for columns and
0.351, for beams (see Table 7.1 for additional details).

< 0.05 a7

Stability Index, Q =

The use of Bq. (7.7) to classify a frame as braced or unbraced is illustrated in Example 7.1.

If a structural frame is not attached to an effective bracing element but depends on the
bending stiffness of its columns and girders to provide lateral resistance, it is termed an unbraced
ot sway frame. Examples of braced and unbraced frames are shown in Fig, 7.10.

Shear wall Prame

= ==

Masonry wal}'_'ﬁ

Ti
,7 168

X 3

T
Ties <]

@

P==f === 3y Deflected

/ / / shape
] -d f
ﬁl-_ M i e

()

FIGURE 7.10 Examples of braced and unbraced frames: (a) frame braced by a shear
wall, (b) rigid frame braced by connection to masonry wall, (c) unbraced frame.
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258 Given two identical frames, one braced and the other unbraced, the effective length of the

rorcen concams columns will always be greater in the unbraced frame than in the braced frame. Since the strength

DESIGN of a colurnn, like the stiffness of a structure, decreases as the effective length increases, the
designer should ensure that bracing elements are incorporated into a structure.

EXAMPLE 7.1. Under factored gravity and wind loads, a first-order structural analysis determines
that the third floor of a reinforced concrete building frame displaces laterally, with respect to the
second floor, a distance Aq = 0.48 inches. The analysis produces the forces shown in Fig. 7.11.
Verify if the columns in the story are considered members of a braced or unbraced frame using Eq,
(7.7 to check the magnitude of the Stability Index, Q.

PMMZOO“ Pu2=300K Pu3=180k
Ay
T NN

rF";r—“ 3rd floor

L=13f

V.

=8

Deflected shape
of columns

EL....-—/""‘“‘““‘:,L_./"“‘& Y. 2nd floor
] ;

® ©

FIGURE 7.11 Section of a reinforced concrete frame
showing both the column forces and the relative lateral
displacement between floors (Ag = (.48 in) created by
factored wind and gravity loads.

Solution. To be classified as a braced frame, @ = % P,AcKV,lc) must not exceed 0.05.

0= {200 + 300 + 180)0.48 in
T TE+12+613x12

= 0,08 > 0.05 Frame classified as unbraced

74 EFFECTIVE-LENGTH FACTORS FOR COLUMNS
OF RIGID FRAMES

In a reinforced concrete frame, columns are rigidly attached to girders and adjacent columns.
The effective length of a particular column between stories will depend on how the frame is
braced and on the bending stiffness of the girders. As a column bends in response to applied
loads, the ends of the attached girders must rotate with the column because of the rigid joint.
If the girders are stiff and do not bend significantly, they will provide full rotational restraint to
the column, like a fixed support (Fig. 7.12a). If the girders are flexible and bend easily, as in
Fig. 7.12b, they provide only a small degree of rotational restraint, and the end conditions for
the column approach those of a pin support that allows unrestrained rotation.

The Jackson and Moreland alignment charts® (Fig. 7.13) can be used to evaluate the influ-
ence of girder bending stiffness on the effective-length factor of a column that is part of a rigid
frame. The charts are entered with values of i for the joints at each end of a column, For a rigid
frame whose members are prismatic, i, the ratio of the sum of the relative bending stiffnesses
of the columns to that of the girders, is defined as

S(Ecl /L)

Y sELL o
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K 0.5 ! ksl FIGURE 7.12 Influence of girder
s 7)7 stiffness on the effective length of a
77 7 column in a braced frame: () rigid
(@) & girders, () flexible girders.

where 1. = effective moment of inertia of column = 0.7 Igross

I, = effective moment of inertia of girder = 0.35Jgross
L. = length of column, center to center of joints
L, = length of girder, center to center of joints
E,, E, = modulus of elasticity of girders and columns, respectively

The intersection of the straight line connecting the two ¢ values with the vertical line la-
beled k gives the value of the column’s effective-length factor. Since the strength of a column
is influenced by the presence or absence of lateral support, charts are given for both braced and
unbraced frames.

The value of the k factor is based on the assumption that all columns in & braced frame
buckle simultaneously and that the girders bend into single curvature with equal but opposite
rotations at each end (Fig. 7.14a). For the unbraced frame, the k factors are based on the assump-

Ya k Vg ¥ k Yy
l--
500 —1.0 500 1000 %18 8 Mo
100 1 100 | | 5004 T - 50.0
50-3 = 5.0 30.0 -+~ 50 - 30.0
3.0 109 ~ 3.0 200+ o NN L 20.0
2.0 . — 2.0 - + R
i ! 10.0 430 |-100
108 Lo 8.0 T = 80
1.0 —~ L - T —
04 T 08 il + C 20
06 107 - 0.6 40 420 F 40
0.5 - 05 3.0 1 Y
0.4 — + ~ 0.4 . A L
0.3 [ 03 2.0 T [ 2.0
0.2 106 - 0.2 7 4 g
) I 1.0 T - 1.0
0.1 + - 0.1 ] 1 -
0 - dos Lo 0- L Lo
(@ ®)

FIGURE 7.13 Jackson-Moorland alignment charts for the effective-length factor
k: (a) braced frames, (b) unbraced frames. § = ratio of Z(EI/L) of compression
members to 3(E1/Lg) of flexural members in a plane at one end of a compression
member, k = effective-length factor.12
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CODE

6.2.4 Additional analysis methods that are permitted
include 6.2.4.1 through 6.2.4.4,

6.2.4.1 Two-way slabs shall be permitted to be analyzed
for gravity loads in accordance with (a) or (b):

(a) Direct design method in 8.10
(b) Equivalent frame method in 8.11

6.2.4.2 Slender walls shall be permitted to be analyzed in
accordance with 11.8 for out-of-plane effects.

6.2.4.3 Diaphragms shall be permitted to be analyzed in
accordance with 12.4.2,

6.2.4.4 A member or region shall be permitted to be

analyzed and designed using the strut-and-tie method in. ...

accordance with Chapter 23. ey

6.2.5 Slenderness effects shall be p_e__:ﬁﬁiffed to be neglected
if (a) or (b) is satisfied:

(a) For columns not braced ag;iiinst sidé_éﬁxray

Ly

¥

(b) For columns braced against sidesway

fﬁ'— <34+12(M,/M,) (6.2.5b)
r
and
-k—e"— <40 (6.2.5¢)
-

where My/M, is negative if the column is bent in single
curvature, and positive for double curvature.

If bracing elements resisting lateral movement of a story
have a total stiffness of at least 12 times the gross lateral
stiffness of the columns in the direction considered, it shall
be permitted to consider columns within the story to be
braced against sidesway.

6.2.5.1 The radius of gyration, r, shall be permitted to be
calculated by (a), (b), or (c):

(a) r= s

s 6.2.5.1
) ( )

(b) 0.30 times the dimension in the direction stability is
being considered for rectangular columns

(aci}

COMMENTARY

Finite element analysis was intreduced in the 2014 Code
to explicitly recognize a widely used analysis method.

R6.2.5:::$_¢éoﬁdi'6fﬂer.eﬁ‘ects in many structures are negli-
gible. In‘these cases; it is unnecessary to consider slender-

“ness effects, and compression members, such as columns,
walls, or braces, can be designed based on forces deter-

mined from first-order-analyses. Slenderness effects can be
neglected in both braced and unbraced systems, depending

“on the slenderness ratio (k2,/r) of the member.

The sign conv:t_:r__l_ti:_c:m' for M;/M; has been updated so that
M,/M, is negative:if bent in single curvature and positive
if bent in‘double curvature. This reflects a sign convention

~change from the 2011 Code.

The primary design aid to estimate the effective length
factor k is the Jackson and Moreland Alignment Charts (Fig.
R6.2.5), which provide a graphical determination of & for a
column of constant cross section in a multi-bay frame (ACI
SP-17(09); Column Research Council 1966).

Equations (6.2.5b) and (6.2.5c) are based on Eq. (6.6.4.5.1)
assuming that a 5 percent increase in moments due to slen-
demess is acceptable (MacGregor et al. 1970). As a first
approximation, & may be taken equal to 1.0 in Bq. (6.2.5b)
and (6.2.5¢).

The stiffness of the lateral bracing is considered based
on the principal directions of the framing system. Bracing
elements in typical building structures consist of shear walls
or lateral braces. Torsional response of the lateral-force-
resisting system due to eccentricity of the structural system
can increase second-order effects and should be considered.

Amarican Conerete Institute — Copyrighted © Material — www.concrete.org
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CODE COMMENTARY
YA k ¥e YA K ¥B
Lo o) (o =] o0
50.0¥ - 1.0 fm 50.0 oo — 4 — oo
10.0 ~3 1 —- 10.0 100.0 — zoo/% — 100.0
5.0 = 50 50.0 — ' 10.0 L 50,0
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(a) (b)
Nonsway Frames Sway Frames

¥ = ratio of Z(Elf£e) of columns to Z(EN¢) of beams in a plane at one end of a column

¢ = span length of beam measured center to center of joints

Fig. R6.2.5—Effective length factor k.
(¢) 0.25 times the diameter of circular columns

6.2.5.2 For composite columns, the radius of gyration, r,
shall not be taken greater than:

. EII5)+E],

E,A 5+ EA,
Longitudinal bars located within a concrete core encased
by structural steel or within transverse reinforcement

surrounding a structural steel core shall be permitted to be
used in calculating Ay, and I,

(6.2.5.2)

6.2.6 Unless slenderness effects are neglected as permitted
by 6.2.5, the design of columns, restraining beams, and other
supporting members shall be based on the factored forces
and moments considering second-order effects in accor-
dance with 6.6.4, 6.7, or 6.8. M, including second-order
effects shall not exceed 1.4M,, due to first-order effects.

American Coricrete Instituls — Copyrighted © Material — www.concrete.org

R6.2.5.2 Equation (6.2.5.2) is provided because the provi-
sions in 6.2.5.1 for estimating the radius of gyration are
ovetly conservative for concrete-filled tubing and are not
applicable for members with enclosed structural shapes.

R6.2.6 Design considering second-order effects may be
based on the moment magnifier approach (MacGregor et al.
1970; MacGregor 1993; Ford et al. 1981), an elastic second-
order analysis, or a nonlinear second-order analysis. Figure
R6.2.6 is intended to assist designers with application of the

slenderness provisions of the Code.
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3.6—Columns design alds

COLUMNS 3.1.1 - Nominal load-moment strength interaction diagram, R21-420.6

2.4‘ Ty

\ T | INTERACTION DIAGRAM R21-420.6 b
ool Looss f,=21MPa e
3 f,= 420 MPa ° * °
N ]”=‘0-6 [ ®
2.0 k K . ‘li .
o Kmnx
I I
- e a
1.6 é\‘m 7’*\\\ \«1
1.4 \ - N It
< N e
- 1.2 \
AR -
N \ :
0.8 |
0.6 |
0.4 F
0.2 |
0.0 b :

000 005 010 015 020 025 030 035 040 045

R,=P e/fl AN




72

K,=P, 1T/ A,

AC] DESIGN HANDBOOK--8P-17M(08)

COLUMNS 3.1.2 - Nominal load-moment strength interaction diagram, R21-420.7
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COLUMNS 3.1.3 - Nominal load-moment strength interaction diagram, R21.420.8
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COLUMNS 3.1.4 - Nominal load-moment strength interaction diagram, R21-420.9
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COLUMNS 3.2.1 - Nominal load-moment strength interaction diagram, R28-420.6
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COLUMNS 3.2.2 - Nominal load-moment strength interaction diagram, R28-420.7
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COLUMNS 3.2.3 - Nominal load-moment strength interaction diagram, R28-420.8
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COLUMNS 3.2.4 - Nominal load-moment strength interaction diagram, R28-420.9
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COLUMNS 3.3.1 - Nominal load-moment strength interaction diagram, R35-420.6
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COLUMNS 3.3.2 - Nominal load-moment strength interaction diagram, R35-420.7
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COLUMNS 3.3.3 - Nominal load-moment strength interaction diagram, R35-420.8
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COLUMNS 3.3.4 - Nominal load-moment strength interaction diagram, R35-420.9
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COLUMNS 3.4.1 - Nominal load-moment strength interaction diagram, R40-420.6
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COLUMNS 3.4.2 - Nominal load-moment strength interaction diagram, R40-420.7
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COLUMNS 3.4.3 - Nominal load-moment strength interaction diagram, R40-420.8
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COLUMNS 3.4.4 - Nominal load-moment strength interaction diagram, R40-420.9
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COLUMNS 3.5.1 - Nominal load-moment strength interaction diagram, R65-520.6
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COLUMNS 3.5.2 - Nominal load-moment strength interaction diagram, R65-520.7
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COLUMNS 3.5.3 - Nominal load-moment strength interaction diagram, R65-520.8
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COLUMNS 3.5.4 - Nominal load-momenti strength interaction diagram, R65-520.9
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COLUMNS 3.6.1 - Nominal load-moment strength interaction diagram, R85-520.6
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COLUMNS 3.6.2 - Nominal load-moment strength interaction diagram, R85-520.7
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COLUMNS 3.6.3 - Nominal load-moment strength interaction diagram, R85-520.8
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COLUMNS 3.6.4 - Nominal load-moment strength interaction diagram, R85.520.9
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COLUMNS 3.7.1 - Nominal load-moment strength interaction diagram, 1.21.420.6
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COLUMNS 3.7.2 - Nominal load-moment strength interaction diagram, L21-420.7
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COLUMNS 3.7.3 - Nominal load-moment strength interaction diagram, L.21
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COLUMNS 3.7.4 - Nominal load-moment strength interaction diagram, 1.21-420.9
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COLUMNS 3.8.1 - Nominal load-moment strength interaction diagram, 1.28-420.6
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COLUMNS 3.8.2 - Nominal load-moment strengih interaction diagram, 1.28-420.7
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COLUMNS 3.8.3 - Nominal load-moment strength interaction diagram, 128-420.8
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COLUMNS 3.8.4 - Nominal load-moment strength interaction diagram, 1.28-420.9
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COLUMNS 3.9.1 - Nominal load-moment strength interaction diagram, 1.35-420.6
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COLUMNS 3.9.2 - Nominal load-moment strength interaction diagram, 1.35-420.7
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COLUMNS 3.9.3 - Nominal load-moment strength interaction diagram, L35-420.8
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COLUMNS 3.9.4 - Nominal load-moment strength interaction diagram, 1.35-420.9

1-8_’3‘. T3 TF LI I |

INTERACTION DIAGRAM L135-420.9 . b
f,=35MPa DL
e | e
|
X i
. 3
=
,
v

Knﬁ PB lf’c Ag

s
I
j

% ;

i ] T

SSCE

= {}
; \\
. : \
A ; | >< i, 0.50 ]
0.8 X j : = : ! ~N i
AN
|/

0.4_ \ Y X AN AN N A
; A RV VARV -

0.2 | RO 7 7
3 999% ////

0.0 Lo
000 0.05 010 015 020 025 030 035 040 045 050 055

R,=P,e/f/ Ah




K,=P, ff"cAg

DESIGN OF CONCHETE ELEMENTS IN ACCORDANCE WITH ACI 318M-05 107

COLUMNS 3.10.1 - Nominal load-moment strength interaction diagram, 1.40-420.6
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COLUMNS 3.10.2 - Nominal load-moment strength interaction diagram, 140-420.7
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COLUMNS 3.10.3 - Nominal load-moment strength interaction diagram, 1.40-420.8
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COLUMNS 3.10.4 - Nominal load-moment strength interaction diagram, L40-420.9
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COLUMNS 3.11.1 - Nominal load-moment strength interaction diagram, L65-520.6
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COLUMNS 3.11.2 - Nominal load-moment strength interaction diagram, L65-520.7
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COLUMNS 3.11.3 - Nominal load-moment strength interaction diagram, 1.65-520.8
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COLUMNS 3.11.4 - Nominal load-moment strength interaction diagram, L65-520.9
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COLUMNS 3.12.1 - Nominal load-moment strength interaction diagram, L.85-520.6
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COLUMNS 3.12.2 - Nominal load-moment strength interaction diagram, 1.85-520.7
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COLUMNS 3.12.3 - Nominal load-mement strength interaction diagram, 1.85-520.8
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COLUMNS 3.12.4 - Nominal load-moment strength interaction diagram, L.85-520.9
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COLUMNS 3.13.1 - Nominal load-moment strength interaction diagram, C21-420.6

| 2

IR

2.4
INTERACTION DIAGRAM (21-420,
5 f.=21MPa
22 f,= 420 MPa
N =0.6
2.0 ?
2 Kmu
1.8 | )
X 0.04 \[
14 p S .
N .03
1.2 B >
X 0.02 W\
10 B .01 =
0.8 F
06 F
0.4 | ;
- $x ):¥
; s>, |/ HM
02 [ %a%ffy%/ /
0.0 bl P :
0,00 0.05 0.10 0.15 0.20 0.25

R=P, e/f/,Ah




120

f
P, 11/ A

Kn

14§

A1 DESIGN HANDBOOK—SP-17M(0%)

COLUMNS 3.13.2 - Nominal load-moment strength interaction diagram, C21-420.7
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COLUMNS 3.13.3 - Nominal Joad-moment strength interaction diagram, C21-420.8
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COLUMNS 3.13.4 - Nominal load-moment strength interaction diagram, C21-420.9
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COLUMNS 3.14.1 - Nominal load-moment strength interaction diagram, C28-420.6
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COLUMNS 3.14.2 - Nominal load-moment strength interaction diagram, C28-420.7
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COLUMNS 3.14.3 - Nominal load-moment strength interaction diagram, C28-420.8
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COLUMNS 3.14.4 - Nominal load-mement strength interaction diagram, C28-420.9
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COLUMNS 3.15.1 - Nominal load-moment strength interaction diagram, C35-420.6
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COLUMNS 3.15.2 - Nominal load-moment strength interaction diagram, C35-420.7
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COLUMNS 3.15.3 - Nominal load-moment strength interaction diagram, C35-420.8
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COLUMNS 3.15.4 - Nominal load-moment strength interaction diagram, C35-420.9
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COLUMNS 3.16.1 - Nominal load-moment strength interaction diagram, C40 420.6
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COLUMNS 3.16.2 - Nominal load-moment strength interaction diagram, C40-420.7
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COLUMNS 3.16.3 - Nominal load-moment strength interaction diagram, C40-420.8
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COLUMNS 3.16.4 - Nominal load-moment strength interaction diagram, C40-420.9
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COLUMNS 3.17.1 - Nominal load-moment strength interaction diagram, C65-520.6
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COLUMNS 3.17.2 - Nominal load-moment strength interaction diagram, C65-520.7
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COLUMNS 3.17.3 - Nominal load-moment strength interaction diagram, C65-520.8
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COLUMNS 3.17.4 - Nominal load-moment strength interaction diagram, C65-520.9
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COLUMNS 3.18.1 -~ Nominal load-moment strength interaction diagram, C85-520.6

1 -4 Ll Ll 13 ¥ T T T
I INTERACTION DIAGRAM C85-520,
[ f.= B5MPa
f,= 520MPa

/
/}é _

T

[ 0.25
0.4 =

: 0.50 7
0. 87 ~scd 075
| Ly
0‘CJO.OOO 0.025 0.050 0.075 0.100 0.125 0.150

R,=P,e/f/ A




140 AC! DESIGN HANDBOOK--8P-17M{08)

COLUMNS 3.18.2 - Nominal load-moment strength interaction diagram, C85-520.7
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COLUMNS 3.18.3 ~ Nominal load-moment strength interaction diagram, C85-520.8
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COLUMNS 3.18.4 - Nominal load-moment strength interaction diagram, C85-520.9
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COLUMNS 3.19.1 - Nominal load-moment strength interaction diagram, $21-420.6
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COLUMNS 3.19.2 - Nominal load-moment strength interaction diagram, 521-420.7
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COLUMNS 3.19.3 - Nominal load-moment strength interaction diagram, S21-420.8
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COLUMNS 3.19.4 - Nominal load-moment strength interaction diagram, §21-420.9
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COLUMNS 3.20.1 - Nominal load-moment strength interaction diagram, 528-420.6
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COLUMNS 3.20.2 - Nominal load-moment strength interaction diagram, $28-420.7
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COLUMNS 3.20.3 - Nominal load-moment strength interaction diagram, 528-420.8
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COLUMNS 3.20.4 - Nominal load-moment strength interaction diagram, 528-420.9
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COLUMNS 3.21.1 - Nominal load-moment strength interaction diagram, 5§35-420.6
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COLUMNS 3.21.2 - Nominal load-moment strength interaction diagram, 5§35-420.7
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COLUMNS 3.21.3 - Nominal load-moment strength interaction diagram, 535-420.8
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COLUMNS 3.21.4 - Nominal load-moment strength interaction diagram, S35-420.9
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COLUMNS 3.22.1 - Nominal load-moment strength interaction diagram, S40-420.6
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COLUMNS 3.22.2 - Nominal load-moment strength interaction diagram, 540-420.7
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COLUMNS 3.22.3 - Nominal load-moment strength interaction diagram, $40-420.8

1.8 —

1.4

INTERACTION DIAGRAM $40-420.8

f'.= 40 MPa
f,= 420 MPa

\7"—' 0-8
0.07

h
#h
efe
ot
e | o
e | o
0 s
i

L. 1/, =90
- Ml & I\ﬂ‘zs i
0.8 | ~<C ”
- 0.50 ’
0.6 -
X l 0.'?15 -
I | \ ]
0.4 | \ A N W . NP PR
I o i
. .0¢ ]
0.2 4 =y ]
0.0 L— . L — L . -
0.00 0.05 0.10 0.20 0.25

0.30




158 ACI DESIGN HANDBOOK—SP-17M{09)

COLUMNS 3.22.4 - Nominal load-moment strength interaction diagram, S40-420.9
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COLUMNS 3.23.1 - Nominal load-moment strength interaction diagram, S65-520.6
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COLUMNS 3.23.2 - Nominal load-moment strength interaction diagram, S$65-520.7
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COLUMNS 3.23.3 - Nominal load-moment sirength interaction diagram, 565-520.8
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COLUMNS 3.23.4 - Nominal load-moment strength interaction diagram, $65-520.9
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COLUMNS 3.24.1 - Nominal load-moment strength interaction diagram, 585-520.6
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COLUMNS 3.24.2 - Nominal load-mement strength interaction diagram, S85-520.7
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COLUMNS 3.24.3 - Nominal load-moment strength interaction diagram, $85-520.8
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COLUMNS 3.24.4 - Nominal load-moment strength interaction diagram, S85-520.9
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at the ends of those bars, where there will be concentrations of stress in Lhe concrete. The
design wotild be improved if the negalive bars were cut off at 3 ft from the face of supports,
eather than 2 ft 3in and 2 ft 6in as shown,-and if the positive steel were cut off at 24t 2in,
rather than at 2ft 11in. This would result in an overlap of approximately 2d of the cut
positive and negative bars.

The required area of steel to be placed normal Lo the main reinforcement for purposes
of temperature and shrinkage crack control is 0.14 in’, This will be provided by No. 4 bars al
16-in spacing, placed directly on top of the main reinforcement in the positive-moment
region and below the main steel in the negative-moment zone.

PROBLEMS

5.1 A small bridge consisting of a concréte slab supported by steel stringers is to carry a
uniformly distributed service load of 300 psf in addition to its own weight. The four stringers of
the bridge, spanning in the long direction, are spaced 8 ft on centers. The concrete slab spans in
the transverse direction and is continuous over the two interior stringers, Find the required
thickness of the stab, and design and detail the bar reinforcement, using f, = 50,000 psi and
{4 = 3000 psi. Ben! bars will be used in preference to all-straight-bar reinforcement. The ACI
moment coefficients do not apply, Use overload factors of 1.4 and 1.7 applied to dead and live
loads, respectively. Use a maximum steel ratio of 0.50ps. ‘
5.2 Redesign the bridge siab of Prob, 5.1 using all straight bars rather than bent bars. Compare
the alternate designs on the basis of weight of steel used, construction convenience, and safety,
5.3 A foolbridge is to be built, consisting of a one-way solid slab spanning 16 ft between masonry
abutments, as shown in Fig. 5.4. A service load of 100 psf of bridge surface must be carried. In
addition, a 2000-lb concentrated load, assumed to be distributed uniformly across the bridge

widih, may act at any location on the span. A 2-in asphall wearing surface will be used, weighing

20 psf. Prepare a complete design, using f¢=4000psi and f, = 60,000 psi, following ACI Code
provisions. Concrete curbs are nonstructural and will be added after the slab is poured.
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Figure 5.4 One-way .slab footbridge: (a)
9] bridge profile, (b) cross section.

TWO-WAY EDGE-SUPPORTED SLABS

5.5 BEHAVYIOR

The slabs discussed in Arts. 5.2 to 5.4 deform under load into a cylindrica
surface. The main structural action is one-way in such cases, in the direction
normal to supports on two opposite edges of a rectangular panel. In many
cases, however, rectangular slabs are of such proportions and are supported
in such a way that two-way action resuits. When loaded, such slabs bend into-
a dished surface rather than a cylindrical one. This means that at any point
the slab is curved in both principal directions, and since bending moments are .
proportional to curvatures, moments also exist in both directions. To resist
these moments, fhe slab must be reinforced in both directions, by two layers
of bars perpendicular, respectively, to two pairs of edges. The slab must be
designed to take a proportionate share of the load in each direction.

Types of reinforced-concrete construction which are characterized by
two-way action include slabs supported by walls or beams on all sides (Fig.
5.1b), fiat plates (Fig. 5.1d), flat slabs (FFig. 5.1¢), and grid slabs (Fig. 5.1f).

The simplest type of two-way slab action is that represented by Fig. 5.1b,
where the slab, or slab panel, is supported along its four edges by relatively
deep, stiff, monolithic concrete beams or by walls or steel girders. If the
concrete edge beams are shallow or are omitted altogether, as for flat plates
and flat slabs, deformation of the floor system along the column lines

“significantly alters the distribution of moments in the slab panel itself (Ref,

3.1). Two-way systems of this type are considered separately, In Arts. 5.8 to
5.16. The present discussion pertains to the former iype, in which edge
supports are stiff enough to be considered unyielding.

Such a slab is shown in Fig. 5.5a. To visualize its flexural performance it is
coenvenient to think of it as consisting of two sets of parallel strips, in each of the
two directions, intersecting each other. Evidently, part of the load is carried by

- one set and transmitted to one pair of edge supports, and the remainder by the

other,
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Simple suppor
all four sides ‘

{a} Bending of center strips of slop

(b} Grid model of slob

Figure 5.5 Two-way slab on simple edge supporis,

Figure 5.5a shows the two center strips of a rectangular plate with short
span I, and long span {,. If the uniform load is w per square foot of slab, each
of the two strips acts approximately like a simple beam uniformly loaded by
its share of w. Because these imaginary strips actually are part of the same
monolithic slab, their deflections at the intersection point must be the same.
Equating the center deflections of the short and long strips gives

Sw,l? _ Swl} (a)
384El  3B4ET

where w, is the share of the load w carried in the short direction and w;, is the
share of the load w carried in the long direction. Consequently,

W _ I} (b)

One sces that the larger share of the load is carried in the short direction, the
ratio of the two portions of the total load being inversely proportional to the
fourth power of the ratio of the spans.

This result is approximate because the actual behavior of a slab is more
complex than that of the two intersecting strips. An understanding of the
behavior of the slab itself can be gained from Fig. 5.5b, which shows a slab
model consisting of two sets of three strips each. It is seen that the two
central strips §) and L, bend in a manner similar to that of Fig, 5.5a. The
outer strips S, and L;, however, are not only bent but also twisted. Consider,
for instance, one of the intersections of Sz with L,. It is seen that at the
intersection the exterior edge of strip L, is at a higher elevation than the
interior edge, while at the nearby end of strip L, both edges are at the same

elevation; the strip is twisted. This twisting results in torsional stresses and

torsional moments which are seen to be most pronouintced near the corners.
Consequently, the total load on the slab is carried not only by the bending
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moments in two directions but also by the twisting moments. For this reasan
bending moments in elastic slabs are smaller than would be computed for sets
of unconnected strips loaded by w, and w,. For instance, for a simply
supported square slab, w, = w, = w/2. If only bending were present, the
maximum moment in each strip would be

2
Q%Z)_I_ = 0.0625wi? (c)

The exact theory of bending of elastic plates shows that, actually, the
maximum moment in such a square slab is only 0.048w!?, so that in this case
the twisting noments relieve the bending moments by about 25 percent,

The largest moment occurs where the curvature is sharpest. Figure 5.5
shows this to be the case at midspan of the short strip S). Suppose the load is
increased until this location is overstressed, so that the steel at the middle of
strip Sy is yielding. If the strip were an isolated beam, it would now fail.
Considering the slab as a whole, however, one sees that no immediate failure
will occur, The neighboring strips (those parallel as well as those perpendi-
cular to S)), being actually monolithic with it, will take over that share of any
additional load which strip S; can no longer carry until they in turn start
yielding. This inelastic redistribution will continue until in a rather large area
in the central portion of the slab all the steel in both directions is yielding,
Only then will the entire slab fail. From this reasoning, which is confirmed by
tests, it follows that slabs need not be designed for the absolute maximum
moment in each of the two directions (such as 0.048w/!? in the example of the
previous paragraph) but only for a smaller average moment in each of the two
directions in the centrai portion of the slab. For instance, one of the several
analytical methods in general use permits the above square slab to be
designed for a moment of 0.036wi2 By comparison with the actual elastic
maximum moment 0.048w/!?, it is seen that, owing to inelastic redistribution, a
moment reduction of 25 percent is provided. :

The largest moment in the slab occurs at midspan of the short strip S, of
Fig. 5.5b, It is evident that the curvature, hence the moment, in the short strip
52 is less than at the corresponding location of strip S, Consequently, a
variation of short-span moment occurs in the long direction of the span. This
variation is shown qualitatively in Fig. 5.6. The short-span-moment diagram in
Fig. 5.6a is valid only along the center strip at 1-1, Elsewhere the maximum-
moment value is less, as shown in Fig. 5.6b; all other moment ordinates are
reduced proportionately. Similarly, the long-span-moment diagram in Fig. 5.6¢

- applies only at the longitudinal centerline of the slab; elsewhere ordinates are
: reduced according to ‘the variation shown in Fig. 5.6d. These variations in

maximum moment across the width and length of a rectangular slab are
accounted for in an approximate way in most practical design methods by

- designing for a reduced moment in the outer quarters of the slab span in each

direction.
It should be noted that only slabs with side ratios less than about 2 need
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Figure 5.6 Moments in uniformly loaded, simply supported slab.

be treated as two-way slabs. From Eq. (b) above it is seen t‘hat 'for a slab of
" this proportion the share of the load carried in the long direction is only of th.e
order of one-sixteenth that in the short direction. Such a slab acts almost as if
it were spanning in the short direction only. ansequently, rectangular s}ab
panels with aspect ratio of 2 or more may be remforced.for one-way action,
with the main steel perpendicular to the long edges. Shrinkage and tempera-

ture steel should be provided in the long direction, of course, and auxiliary

reinforcement should be provided over, and perpendicular to, the short
support beams and at the slab corners to control cracking (see Art. 5.6).

5.6 ANALYSIS BY COEFFICIENT METHOD

The precise determination of moments in two-way slabs with various condi-
tions of continuity at the supported edges is mathematically formidable-and
not suited to design practice, For this reason, various simplified methods have
been adopted for determining moments, shears, and reactions of such slabs.
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In earlier editions™ot’ the ACI Code (Ref. 5.2), three different methods were
presented.t The most rational and widely used will be deseribed here.

‘The method makes use of tables of moment coefficients for a variety of
conditions. These coefficients are based on elastic analysis but also account
for inelastic redistribution. In consequence, the design moment in either
direction is smaller by an appropriate amount than the elastic maximum
moment in that direction. The moments in the two directions are computed
from

M, = Cowi? 5.1a)
and M, = Cywif (5.1b)

where C,, C, = tabulated moment coefficients
w == uniform load, psf :
le, I = length of clear span in short and long directions, respectively

The method provides that each panel be divided in both directions into a
middle strip whose width is one-half that of the panel and two column strips
of one-quarter of the panel width (se¢ Fig. 5.7). As discussed before and
shown in Fig. 5.6b and d, the moments in both directions are larger in the
center portion of the slab than in regions close to the edges. Correspondingly,
it is provided that the entire middle strip be designed for the full, tabulated
design moment. In the column strips this moment is assumed to decrease
from its full value at the edge of the middle strip to one-third of this value at
the edge of the panel. This distribution is shown in Fig. 5.7a and b,

The discussion so far has been restricted to a single panel simply
supported at all four edges. An actual situation is shown in Fig. 5.8, in which a
system of beams supports a two-way siab. It is seen that some pancis, such as
A, have two discontinuous exterior edges, while the other edges are continu-
ous with their neighbors. Panel B has one edge discontinuous and three
continuous edges, the interior panel C has all edges continuous, and so on. At
a continuous edge in a slab, moments are negative, just as at interior supports
of continuous beams. Also, the magnitude of the positive moments depends
on the conditions of continuity at al] four edges.

Cdrrespondingly, Table 5.2 gives moment coefficients C, for negative
moments at continuous edges. The details of the tables are self-explanatory,
Maximum negative edge moments are obtained when both panels adjacent to

the particular edge carry full dead and live load, Heice the moment is

tAll were deleted from the 1971 and 1977 editions of the Code so that all types of two-way
concrele construction, including edge-supported slabs, flat slabs, and flat plates, could be treated
by one unified method. However, the complexily of the generalized method for design of
lwo-way systems in the 1971 and 1977 editions of the Code has led many engineers to use the
design method of the 1963 Code for the special case of edge-supported slabs. The method of
design described in this article has been used extensively for two-way slabs supported at the
edges by walls, steel beams, or concrete beams having total depth not less than about 3 times the
slab thickness. Its continued use is endorsed in the ACI Code Commentary 318-77.
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Table 5.2 Coefﬁéﬁ*ﬁts for negative moments in siabst

—_ 1
Mer.n:g = Cn,ucg wiy
3

M;,,,.,g = Cb.n,gll’fﬁ

where w = total uniform dead plus live load

sLabs 217

Ratio Case ! | Case2 | Case 3 | Case 4 | Case 5 [ Case 6 | Case7 | Case 8 | Case 9
mep | C I gl
h
100 Cones 0.045 0.050 | 0.075 | 0.071 0.033 | 0.06¢
i 0.045 [ 0076 | 0.050 0.071 | 006} | 0.033
0.95 Crnes 0.050 0.055 | 0079 | 0075 0.038 | 0,065
7 Chrer 0.041 | 0072 | 0.045 0.067 | 0.05 | 0.029
0.9p Conee 0.055 0.060 | 0.080 | 0079 0.043 | 0.068
Y G 0.037 | 0.070 | 0.040 0.062 | 0.052 | 0025
0.85 Conce 0.060 0.066 | 0.082 | 0.083 0049 | 0072
™ Chneg 0.031 0.065 (.034 0.057 0.046 0.02]
0.g0 Cunee 0,063 0071 | 0.083 | 0.086 0.055 | 0.075
T Chne 0.027 | 0.061 | 0.029 0.051 | 0041 | 0.017
075 Coms 0.069 0.076 | 0.085 | 0.088 0.061 | 0.078
"7 Chice 0.022 | 0.056 | 0.024 0.044 | 0036 | 0.014
0.79 Conce 0.074 | 0.081 | 0.08 | 0.091 0.068 { 0.081
Y Chpee 0.017 1 0050 | 0019 0.038 | 0.029 | 0.0
0.65 Conee 0.077 0.085 § 0.087 | 0.093 0.074 { 0,083
2 Chner 0.014 | 0.043 | 0.015 0.031 | 0024 | 0.008
0.60 e 0.081 0.089 | 0.088 | 0.095 0.080 | 0.085
™ Chace 0.010 | 0.035 | 0.011 0.024 | 0.018 | 0.006
0.55 Coret 0.084 0.092 | 0.089 | 0.09% 0.085 | 0.086
" Chone 0.007 | 0.028 | 0.008 0.019 | 0.014 | 0.005
0.50 Concs 0.086 0.094 | 0,09 | 0.097 0.089 | 0.088
" Chnex 0.006 | 0.022 | 0.006 0.614 | 0.010 | 0.003

Figure 5.8 Portion of typical two-way siab floor with
beams on column lines.

A crosshatched edge indicates that the slab continues acroas, or is fixed at, the support; an
unmarked edge indicates a support at which torsional resistance is negligible.

computed for this total load. Negative moments at discontinuous edges are
assumed equal to one-third of the positive moments for the same direction.
One must provide for such moments because some degree of restraint is
provided discontinuous edges by the torsional rigidity of the edge beam or by
the supporting wall. .

For positive momenits:

here will be little, if any, rotation at the continuous
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Table 5.3 Coeflicients for dead-load positive moments in slabis1

= 2
Maporn = Caala oy ere 1 = total uniform dead load
Mp st = Crawli

Ratio Case | | Case? | Case 3 | Case4 | Case 5 { Case 6 | Case 7 | Case 8 | Case 9

S e e i I e i i 1

h

Cou | 0036 | 0018 | 0018 | 0027 | 0027 | 0033 | 0027 | 0.020 | 0.023
100 2" | o036 | 0.018 | 0027 | 0027 | 0018 | 0027 | 0033 | 0023 | 0020

Cay | 0,040 0.020 0.021 0,030 0.028 0.036 0.031 0.022 0,024
0.95 Cha | 0033 0.016 0,025 0.024 0.015 0.024 0.031 0.021 0.017

Con | 0.045_( 0.022 0.025 0.033 0.029 0.039 0.035 0.025 0.026
0.50 Chan | 0.029 0.014 0.024 0.022 0.013 0.021 0.028 0.019 0.015

Con | 0050 | 0024 | 0029 | 0036 | 003t | 0.042 | 0040 | 0.020 | 0028
085 o' | o026 | 0012 | 0022 | 0019 | 0011 | 0017 | 0025 | 0017 | 0013

Caat | 0.056 0.026 0.034 | 0.039 | 0032 0.045 0.045 § 0.032 0.029
0.80 Cra | 0.023 0.011 0.020 0.016 | 0.009 0.015 0.022 0.015 0.010

Con | 0061 | 0028 | 0040 | 0043 | 0033 | 0048 | 0051 | 0036 | 0.031
075 ¢, | 0019 | 0009 | 0018 | 0013 § 0007 | 0012 | 002 | 0013 | 0.007

Cow | 0068 | 0030 | 0046 | 0046 | 0035 | 0051 | 0058 | 0.040 | 0.033
070 .t 0016 | 0.007 | o016 | oo0m | 0005 | 0.009 | 0017 | 0011 | 0.006

Coa ! 0074 | 0032 | 0054 | 0050 | 0036 { 0.054 | 0065 | 0044 | 0.034
065 ' 1 0013 | 0006 | 0014 | 0009 | 0004 | 0.007 | 0014 | 0009 | 0.005

Cow | 0081 | 0034 | 0062 | 0.053-| 0037 | 0.056 | 0073 | 0048 | 0.036
060 ~" | 0010 | 0004 | 0011 | 0007 | 0003 | 0.006 | 0.012 | 0.007 | 0.004

Con | 0088 | 0035 | 007t | 0056 | 0.038 | 0058 | 0.081 | 0052 | 0.037
055 S 1 0008 | 0.003 | 0009 | 0005 | 0.002 | 0.004 | 0.009 [ 0005 | 0003

Cou | 0095 | 0037 | 0080 | 0059 | 0039 | 0061 | 008 | 0056 | 0038
0.50 ¢, | 0006 | 0002 | 0.007 | 0.004 | 0001 | 0.003 | 0.007 | 0.004 | 0.002

tA crosshalched edge indicates that the slab continues across, or is fixed at, the support; an
unmarked edge indicates a support at which lorsional resistance is negligible.

edges if dead load alone is acting, because the loads on both adjacent panels
tend to produce opposite rotations which cancel, or nearly so. For this
condition, the continuous edges can be regarded as fixed, and the appropriate

coefficients for the dead-load moments are given in Table 5.3. On the other -

hand, the maximum live-load moments are obtained when live load is placed
only on the particular panel and not on any of the adjacent panels. In this

)
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Table 5.4 Coefficitus for live-load positive moments in slabsT
M aposdi = Cn.ﬂ“"li

Mypoen = Chrawi} where w = total uniform live load

Ratio Case | | Case2 | Case 3 | Case 4 | Case 5| Case 6 Case 7 | Case 8 | Case 9

PR I S I s I o I s O

) Conr { ~0.036 0.027 0,027 0032 0.032 0.035 0.032 7 0.028 0.030
Con 0.036 0.027 0.032 0.032 0.027 0.032 0.035 0,030 0.028

Con 0.040 0.030 0.031 0.035 0.034 0.038 0.036 0.031 0.032
G 0.033 0.025 0.029 0.029 0.024 0.029 0.032 0.627 0.025

] 0.045 0.034 0.035 0.039 0.037 0.042 0.040 | 0,035 0.036
Chu 0.029 0.022 0.027 0.026 0.021 0.025 0.029 0.024 0.022

) Con 0.050 0.037 | 0.040 | 0.043 0.041 0.046 0.045 0.040 0,039
Chus 0.026 0.019 | 0.024 § 0.023 0.019 | 0.022 0.026 | 0.022 0.020

Catt 0.056 0.041 0.045 | 0.048 | 0.044 | 0.051 0.051 0.044 | 0.042
Coit 0023 | 0817 | 0,022 | 0.020 | 0016 | 0.019 | 0.023 0019 | 0.647

Catt 0.061 0.045 | 0.051 0.052 | 0.047 0055 0.056 | 0.049 0.046

0.75
7 Gy 0.019 | 0014 | 0.019 | 0.016 0.013 | 0.046 | 0.020 | 0.0I6 0.013

0.70 Canr 0,068 | "0.049 0.057 0.057 0.051 0.060 0.063 0.054 0.050
Con 0.016 0.012 0.0i6 | 0.014 0.011 0.013 0.017 0.014 0.011

0.65 Cont 0.074 0.053 0.064 0.062 0.055 .0.064 0.070 0.059 0.054
Conr 0.013 0.010 0.014 0.011 0.009 0.010 0.014 0.011 0009

Cont 0.081 0.058 | 0.071 '| 0.067 | 0059 | c.068 | 0.077 0.065 | 0.059

0.60
Cian 0.010 | 0.007 § 001! 0.009 0.007 ¢ 0.008 | 0.011 0.009 | 0.007

0.55 Cen 0.088 0.062 | 0.08¢ | 0.072 0.063 0.073 0.085 0.070 0.063
G 0.008 0.006 | 0.009 | 0.007 0.005 0.006 | 0.009 0.007 | 0.006

0.50 Can 0.095 0.066  0.088 0.077 | 0.067 | 0.078 | 0.092 0.076 | 0.067
Cha 0.006 | ¢.004 | 0.007 | 0.005 0.004 | 0.005 § 0,007 { 0.005 0.004

tA crosshatched edge indicates that the slab continues across, or is fixed at, the support; an
unmarked edge indicates a support at which torsional resistance is negligible.

case, some rotation will occur at all continuous edges. As an approximation it
Is assumed that there is 50 percent restraint for calculating these live-load
momengs. The corresponding coefficients are given in Table 5.4. Finally, for
cpmputmg shear in the slab and loads on the supporting beams, Table; 5.5
gives the fractions of the total load w which are transmitted in the two
directions.
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Tabie 5.5 Ratio of load w in !, and [, directions for sheai....; slab and load on
supportst .

9
Ratio “Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | Case 7 ;ase 8 | Case

m=l | COICHIC I I COICT I 31T

by

0.83 0.7t I 029 0.33 0.67
W, .50 0.50 0.17 0.50 . ‘ o
160 Wi 0.50 0.50 0.83 0.50 0.17 0.29 0.n 0.67 0.3

W, 0.55 0.55 0.20 0.55 0.86 .75 0.33 0.33 0.71

095 wo | oas | 045 | o080 | 045 | 014 | 025 | 067 | 062 | 02
w, | o60 | o6o | 023 | 060 | 088 | 07 | 038 o.tg g.;;
0.9 ' | oa0 | o040 § 077 | 040 | 012 | 021 | 062 | o )

W, 0.66 0.66 0.28 0.66 0.90 0.83 0.43 0.49 0.79

21
085 wi 1 034 | 034 | o072 1034 | 010 | 017 | 0os7 | o5t | 02
" 0.83
w, | o7t | o071 | 033 | o1t | 092 | 08 0.49; 3'3; 083
080 oo | 020 | 020 | 067 | 029 | 008 | 014 | 05 )
0.88 056 | 0.61 | 086
| 076 | 076 | 039 | 076 | 094 )
0.75 m 024 | 024 | o6t | 024 | 006 | 012 | 044 | 039 | 0.4
95 0.91 0.62 068 | 089
w, | o081 | o081 [ 045 | o081 | 0
070wl 019 | o1 | oss | 019 | 005 | o0oo | 038 {.032 | o1l
096 | 093 | 069 | 074 | 092
w, | o085 1 085 | 053 | 085 _
065w | o5 | o015 | 047 | 015 | 004 | 007 | 031 | 026 | 008
: 4
097 | 095 | 076 | 080 | 09
w, | o8 | 08 | osl | 080 . 094
060 w, | o1t | o1t | 039 | o1 | 003 | 005 | 024 | 020
95
w, | 09 | 092 | 069 | 092 | 098 | 096 | 081 g.?g g gs
055 we | o008 | 008 | 031 | 008 | 002 | 004 | 0.19 ) )
w, | 094 | o094 | 076 | 094 | 099 | 097 | 086 g.tﬁ g.g;
050 wr | 006 | o006 | 024 | 006 | 001 | 003 | 0.14 . .

i i s an
TA crosshatched edge indicates that the slab continues across, or is {ixed at, the suppo P
unmarked edge indicates a support at which torsional resistance is negligible.

Since positive-moment steel is placed in two layers, tt‘le distance d for :ﬁe
upper layer is smaller than for the lower layer by one par dlamet.er. Because the
moments in the long direction are the smaller ones, it is econf)mlcai to place the

i irect in the short direction.
steel in that direction on top of the ba.rs n

The twisting moments discussed in Art. 5.5 are uvsually of coniec_luence

only in exterior corners, where they tend to crack the slab along 45° lines at
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the corner pau,,,ﬁ-g. Special reinforcem
corners in both bottom and fop of the slab

orcement in the top
of the slab should be paralle! to the diagonal from the corner, The reinforce-

ment in the bottom. of the slab shouid be at right angles to the diagonai, or it
may consist of bars in two directions paralle] to the sides of the slab., The
reinforcement in each band should be of size and spacing equivalent to that
required for the maximum positive moment in the siab,

The precise locations of inflection points in two-wa
determined, since they depend upon the side ratig,
and continuity conditions at the edges. A reasonabl
line of inflection exists parallel to any continuous ed

one-sixth the span. The rule can be applied to bo
directions.

¥ slabs are not easily
ratio of live to dead load,
¢ rule is to assume that a
ge at a distance from it of
th the long and the short

5.7 TWO-WAY EDGE-SUPPORTED SLAB

Exampile 5.2: A monolithic reinforced concrete
measuring 21 X 26 ft, as shown in Fig. 5.9, Beam

on all column lines; thus the clear-span dimensions for the two-way slab panels are
20X 25{t. The floor is to be designed to carry a service live load of 137 pst uniformly

distributed over ifs surface, in addition to its own weight, using concrete of strength

fe=3000 psi and reinforcement having f, = 60,000 psi. Find the required slab thickness and

reinforcement for the corner panel shown (bays 6.40x7.92 m, b =305mm, h =610 mm,
b =6.10X 7.62 m, wy, = 6.56 kN/m?, fi=20.7 MPa, fv =414 MPa).

The minimum thickness for slabs of this type is often taken equal to [/180 limes the panel
perimeter:

floor is to be composed of rectanguiar bays
s of width 12in and depth 24 in are provided

h=2(20+25) % 12/180 = 6 in (152 mm) ~

This will be selected for a trial depth, The corresponding dead load is !x 150 = 75 psf. Thus
the factored loads on which the design is to be based aye

Live load = 1,7% 137 = 233 psf
Dead load = 1.4 x 75 = 105 psf
Total load = 338 psf (16.2 kN/m?Y)

With the ratio of panel sides m = /I, =

20/25= 0.8, the moment calculations for the sfab
middle strips are as follows.

Negative moments af continugus edges (Table 5.2)

Munce = 0.071 X 338 % 20% = 9600 ft-1b = 115,000 in-Ib (13.00 kN-m)

M.nce = 0L029 X 338 % 257 = 6130 ft-lb = 73,400 in-Ib (8.29 kN-m)
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21-0"

panel

L ! ,
[ ..
"‘I‘l‘“‘zu -4 P12 Figure 5.9 Two-way edge-supporied slab: (a)

{5} partial floor plan; (b) typical cross section.

Positive moments (Tables 5.3 and 5.4)
J\’fu,pus‘.dl = (0,039 x 105 x 20" = 1638 ft-Ib = {9,700 in-Ib (2.27 kN-m)
M g posit = 0.048 X 233 X 20° = 4470 ft-1b = 53,700 in-1b (6.07 kN'm)
M o posawr = 73,400 in-1b (8.29 kN-m)‘
M pposar = 0.086 % 105 x 25% = 1050 ft-1b = 12,600 in-1b (1.42 kN-m)
M pposn = 0020 X233 X 25" = 2910 ft-lb = 35,000 in-Ib (2.96 kN'm)

M p.pos.ant = 47,600 in-1b (5.38 kN'm}
NLTEL
Negative moments at discentintous edges ¢ X pasitive moments)

M ey =3 (13,400) = 24,500 in-To (2.77 kN-m)

My pee = % (47,600) = 15,900 in-Ib (1.80 kN-m)
The required reinforcement in the middle strips will be selected with the help of Graph A.l.
Short direcfion

(1) Midspan

M. 73!400 p= 0.0048
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(2) Continuols-tdge

M, 115000 —
607 050X 12X 5 =426 p=000781

v

A, =0,0078 12X 5= 0.468 in?/f1. If two of every three positive bars arc bent up, and
likewise for the adjacent panel, the negative-moment steel arca furnished at the continuous
edge will be 4/3 times the positive-moment steel in the span, or A, = 4{3x 0,34 = 0.453 in¥. It
is seen that this is 3 percent less than the required amount of 0.468. On the other hand, the
positive-moment steel furnished, 0.34 in*fft, represents about 15 percent more than the
required amount. As discussed in Art. 8.7, the Code permits a certain amount of inelastic
redistribution, within strictly specified limits. In the case at hand, the negative steel
furnished suffices for only 97 percent of the calculated moment, but the positive stcel
permits about 115 percent of the calculated moment to be resisted. This more than satisfies
the conditions for inelastic moment redistribution set by the Code. This situation illustrates
how such moment redistribulion can be utilized to obtain a simpler and more economical
distribution of steel.

(3) Discontinuous edge The negative moment af the discontinuous edge is one-third the
positive moment in the span; it would be adequate to bend up every third bar from the
botlom to provide negative-moment steel at the discontinuous edge. However, this would
result in a 21-in spacing, which is larger than the maximum spacing of 34 = 18 in permitted
by the Code. Hence, for the discontinuous edge, two of every three bars will be bent up
from the bottom steel,

Long direction
{I) Midspan

Mo _ 47600 _
Fbd’ " 030 x [2x 452 218 p=0.0038

(The positive-moment steel in the long direction is placed on top of that for the short
direction, This is the reason for using d =4.5in for the positive-moment stegl in the long
direction and d = §in in all other locations.) A, = 0.0038 x 12 % 4.5 = 0.205 in¥/ft, From Table
A4 No. 3 bars at 6-in spacing are selected, giving A, = 0.22inYft. :

(2) Continuous edge

M, _ 3400 ~
$bd? " 090 [2x 5 212 p=00048

A; = 0.0048 X {2 x 5= 0.288 in¥/ft. Again bending up two of every three bottom bars from
both panels adjacent to the continuous edge, one has, at that edge, A, =% 0.22 =0.29 in¥/ft.

(3) Discontinuous edge For the reasons discussed in connection with the short direction,
two out of every three bottom bars will, likewise, be bent up at this edge.

The steel selections above refer 10 the middle strips in both directions. For the cofumn
strips, the moments are assumed to decrease linearly from the fuil caiculated value at the
inner edge of the column strip lo one-third of this value al the edge of the supporting beam.
To simplify stee! placement, & uniform spacing will be used in the column strips. The

TNote that this value of p, which is the maximum required anywhere in the slab, is wel below

the permitted maximum valtue of 0.75p, = 0.0160, indicating that a thinner slab might be used.

- =772 .. . . . \
W 090 % 12X 5¢ However, use of the minimum possible thickness would require an increase in the tensile-steel

area and would be less economical for this reason. In addition, a thinner slab may produce

= in? . 4 bars at 7-in spacing are selected, : . !
g A aapimi e From Tuble A Ho. 4 bar i undesirably large deflections. The trial depth of 6 in will be retained for the final design.

giving A, = 0.34 in¥/ft.
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average moments in the column strips being two-thirds of the coritsponding moments in the
middle strips, adequate column strip steel will be furnished if the spacing of this steel is
three-halves times that in the middle strip. Maximum spacing limitations should be checked.
According to the recommendation of Art. 5.6, inflection points may be assumed a distance
i{6 from the continuous edges, that is, 3t 4in in the short direction and 4 ft 2in in the long
direction. Two of every three bars are bent up at these locations. The bent-up bars must be
carried over the support and beyond the inflection point of the adjacent panel a distance not
less than one-sixteenth of the span, or the depth of the member, or 12 bar diameters,
whichever is greatest. It is customary and slightly conservative, instead, to extend these bars
to the quarter point of the adjacent span. This extension will also satisfy the requirements
for development fength for these negative-moment bars.

The same pattern of bend and culoff points will be followed at the discontinuous edge of
the panel. At that edge, negative bars will be extended as far as possible into the supporting
beams, then bent downward in a 90° bend to provide sufficient anchorage.

The reactions of the slab are calculated from Table 5.5, which indicates that 71 percent of
the load is tfansmitted in the short direction and 29 percent in the long direction. The total load
on lhe panel being 20x25x338=169,0001b, the load per fool on the long beam is
(0.71 x 169,000)/(2 » 25) = 2400 Ibfft, and on the short beam is (0.29 X 169,000)/(2 X 20) =
1220 1b/f1. The shear to be transmitted by the slab to these beams is numerically equal to these
beam loads. The shear strengih of the slab is

¢V, =0.85x2V3000 % 12x 5= 5550 1b

well above the required shear strength at factored loads,

PROBLEMS

5.4 A concrete slab roof is to be designed to cover a transformer vault. The outside dimensions
of the vault are 17x20ft and walls are 8-in brick. A service live load of 80 psf, uniformly
distibuted over the roof surface, will be assumed. Design the roof as a two-way slab, using ¢
fFE=4000 psi and £, = 50,000 psi. ’

5.5 A concrete warehouse floor is framed by beams on the column lines, which are 18 ft on center
in tne direction and 24 ft on center in the other. Beam webs may be assumed to be 12 in wide. A
service live load of 225 psf must be carried, Design a typical interior panel with fi = 5000 psi and

£, = 60,000 psi, Figure 5.10 Column-supported

two-way slabs: (a) two-way slab
with beams and celumns; (b) two-
(8 way slab without beams,

TWO-WAY COLUMN-SUPPORTED SLABS ¢ oad w is applied, that load is shared between imaginary slab strips § in the
; + short direction and L in the long direction, as before. Note that the portion of

he load that is carried by the long strips I is delivered to the baams f
panning in the short direction of the panel. This portion carried by the beams
B plus that carried directly in the short direction by the slab strips S sums up
¢to 100 percent of the load applied to the panel. Similarly, the short-direction
islab strips S deliver a part of the load to long-direction girders . That load
lus load carried directly in the long direction by the slab includes 100 percent
.of the applied load. It is clearly a requirement of statics that for column-
i supported construction 100 percent of the applied load must be carried in each
irection, jointly by the slab and its supporting beams,

5.8 BEHAVIOR
When two-way slabs are supported by relatively shallow, flexible beams, or if ;
column-line beams are omitted altogether, as for flat plates (Fig. 5.1d) or flat
slabs (Fig. 5.1e), several new considerations are introduced. Figure 5.10g
shows a portion of a floor system in which a rectangular slab panel is
supported by relatively shallow beams on four sides. The beams, in turn, are
supported by columns at the intersections of their centerlines. If a surface



£ QW/KQ 2’“"(;”’%7\%

th,« = 20 M Fa

b & Gtmn

,r_b = 280 MR

Es = 2o0 060 Hfa.

Wi

3@ 3e b&v‘s
(?5"—?‘0 = \:¥1 0?&4@3’

& O v
EJ‘ 280

2o &EC

= 0;@@/?

2p= 0.203

(33.5)

o
==

59.4 t

Fo= G +&i+Cs2 =T
. =132 +55.5+8([-5%4

o
652. -

_ @ .o0HY
6.Scan = 22, 8Ycn
; .- IB2E
‘9&9@,&/ 2 ) .
_1 A R P ©.003
. o= ‘(9 2, .
= 3(7 ‘—‘r)(as) e

22 3Cf é S %@Lﬁﬁj
z22. 89
2 %1‘ % = 280 Hfe

2,89 xage?oés: 6,000 373
&215(,

’ —Cb—f A= F46 MR
\350* ‘%gw l
i Wi e _S i ;(3;:;%0?) (2‘ 8"'&‘%[&‘2))

= 5$55.8¢

=
iy

Si4 €

8.002iS

Csz = (2 rﬂ?.af’%)(a;%qé-—a&s(_;mz}:

¥

!



- sy . : ! : o - ey .
Fe-l  @s = (0% Case S v oZ0H Cane b,

</ v w

| gt =t Abber 2 koo
Cy = A;(pg,.cs.ggtc:') ' | bec, Gleteyuined t
= C? X?Q?) AZ,éB) L G 2= 29,9 Con
= 5.8t 25 S €y =55,86
T A [l; ‘fs*?é

F—c. = 085 5@599

= 0.85(0-2)(a0)fe35x)

= 5,73 <

b =(zo00) (e e03(33.5- x)/%) = 6(33 5-%)/%
T= As FS (3%?«0?) (6(33 =) fo )
= 4265 ~ [27%.3

"7L

ﬂh‘g /nfa_mw,ts a«bsu& 'Ph > *D

Ce (2:85= - ‘%.G)_ Cs(30) - T (23.9)

2

(5 ?87c).(a,qz%c_%é>-(59,8)(3{1) - (iz?fz - m.;) (23 e)ac

‘ 246 7T _SS 4G _ (F2.98 -~ (0I88t 4+ 3042.5 20
7L

Bg 6;/-;51,@ Mef Ener, E = 299  cun
( L = £.8% = = ZQ:Z{%) Jd2




= C/”j s LS. G Ep = 2 Y o él‘«f? 'ﬂamwé
&, > écj ‘
a5 ume & = & | Nebe Haek
. 'L——"*é ,,,—————;" ;ﬁ&"mﬂ;j f‘LL
:'T'z A—s Fg l _ .ﬂom?cie“e_ Sf‘&uf
= 59.4¢ o 65t v Fhis Cons

s ey

C = 578= ;‘,__'35,’;% Z
| LN L reascnabie |
; G ] p . F .
ieg =6w0l4 | Q 2.003
sl A ft

- __A%i“f_ﬁJﬂﬁg -i oj . M

et

R I

L
Pz G+ Cs_T = 5.798x + §5.8 -5y = 5,78x -3

7—&@;@ fnﬂmn&n}@ 7"\«&@“"& ')Le/lflgrl'(é'ﬂ SE'EJ?-}; 'F'D
Pr(28.9) - Cc (335 - @ssx) Cs (33.5-6:5)=0

(38‘9(5 ¥8x - 34;) (578 ) (33.5- 0.425%) - (55:3)(27) =0
ZZf{ng% - 140 - 193.bx 4 2,46 %" — I50F = O

AF 4+i2.68x - 6F0 =0O
Fe K = Z& B Cun Qii?"'[rﬁa«m}
Chueck asstunphion: €5 M(@ oe3) 2Bi00204> &

R assumf?ﬁw s Covfeme t

=HFsEy Bz iB 5 | o e




Biaxiek Bendiny

¢
g PES ST B tn |

Ll
b
| w 1
oo M= R ey
T Mmg = ﬁa Ex
eqg | h
X 1y -
i
|
|
—7&.
J
AP NS I CBresia)
D'\“} ‘Sﬁ‘un—\‘;—k

2.;& w{\"‘“c"‘"




™ .
-

T roun s ;[e/; af [Movirent

wﬁ—ef S b2 nn
Cionolitue Toints) Flal Plales

Muw = Ml + Muv
ﬁe?“""“: Shean Mwsfé—’b
TVEWESF.«. ?_ g.j_ M
Mu ‘ ]
_ ; | (4ct ii.rz,eg)
M

Mup = 27 Mu =
) e I+ 220

bz

Ct’ahca-ﬂ ‘5::5?795« éiiVMrW>lQM M #’L

ém'?d—uw cﬂllfﬁﬁhg*”
o + dfs  for exhercer columns

o + A B inkerier Colunan s
cihicad sechom dimension v He
| CV‘WW-& Jz?VéﬁHﬂh

= & +d

e

by =

N

N

'bz,:

CACT- (3.5.3.3)

Vi € @35 ¢Ve e.,la,e,
Vi & ese CF\,’@; Coviner

i’C frue et Shzga ;:LM(/

S'MP hﬁltcﬁhcms

t{\ %——‘-4_. (_;((-;»w-t e.-_.,"pc:» fS

=) iR F ;h&ﬁach;eq
WMWAXZ

“1 ) e W CFMWLM W
. Mh f'&_;(wua_ ( ‘5{, [0 )
flosperc, Comnida pus e;z?.;,j e
(:(,—/L [ }{/\A’ZC*’L ﬁngfﬂf; V’i’S ; Vi & @ Q’\\'{C._
= fﬂcrea,a,é ’5}: r] l




LAP SPLICE

L5555 THAN et

‘DETAILS AND DETAILING OF CONCRETE REINFORCEMENT

LOWER BAR
PPER BAR

SECTION A-A

1.5 BAR
DIAMETERS
HINTMUM
PISTANCE
1le" [40"111]

LOWER BAR
UPPER BAR

SECTION BLp!
ACCEPTABLE ARRANGEMENT FOR
MAXIMUM NUMBER OF BARS , —m

-

315-23

1.5 BAR
DI1AMETERS
MINIMUM
DISTANCE
12" [40mm])
LOWER BAR .
UPPER BAR

SECTION 3-8

PREFERRED ARRANGEMENT

(1) DETAIL SHOWING TYPICAL

INTERIDR TIED COLUMN

Note: Where column size above is un
at end of column. In U.S. practice, this
standings, whenever its use is deemed

A peah
¥ v

(3) DETAIL TYPICAL EDGE COLUMN

WITH SPANDREL BEAM

Fig. 4—Column splice details.

e kT,
>2{
= 0
k]
>{wv
ut| %
ol
., En
% a1l SOTTOM LAYER
EX SLAB STEEL
E‘% } Vol o o
S ] -
: } TIE SIZE AS
2 % REQUIRED 87 9
; E STRUCTURAL D¥G.%
éfl 2 ] |
¥ &
® I
" Q|
= el
o =2
[=]
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DETAILS AND DETAILING OF CONCRETE REINFORCEMENT 315-21

AT LEAST 144 OF POSITIVE MOMENT
REINFORCEMENT TERMINATED WITH
ACI STANDARD HOQK
TIRRUP SUPPORT BARS AT LEAST [f4 oF POSITIVE MOMENT RE INFORCEMENT

ACI STANDARD HODK {IFf NECESSARY) CONTINUGUS OR CLASS A TENSION SPLICED

A
0.25L 11", 0.3L or D.3L3 0.3L or, 0.311
,——[40!1111} GREATER GREATER . 145" [4Cim| CLR
cL. L 1 i
r
11 [ 40mm]
o) ok [

3 = T
FHI ] '
<>
. / 1 il
* 9] T
Z‘srszups—J Q-1251 Q. 125k % A 12" [40mm] CLR
2" {50mm L=CLEARSPAN . ¢ UNDER STIRRUPS
CLEAR ___J e A C. -
../\/_......._....

NCN-PERIMETER BEAM WITH OPEN STIRRUPS

TIRRUP SUPPDRT BARS
ACL STANDARD HDOK t1F NECESSARY!}

. B
0,251 1" 0.3L or 0.3L1 D.3L or 0.3L1,
[40mm]{™ CREATE IGreaT TR 12" {40mm]cLR
CL. r ]
k) f - e
i’ ) ) _i
. 4 &

f . - e 1 2 { 4 Orzem)
L 0] , CL
k3 STIRRUPS—I 0.1251 355' . 1250 ) AL
. . L =CL EARSPAN L :
2 ’Igfﬂ’g _‘ = 115" [ 4Gmm] CLR
LA ) UNDER $TIRRUPS
NON-PERIMETER BEAM WiTH CLOSED STIRRUPS
: SEC. B-R

. AT LEAST 1/6 OF NEGATIVE MOMENT REINFORCEMENT
AT LEAST lrg GF POSITIVE MOMENT CONTINUOUS OR CLASS A TENSION SPLICED AT MIDSPAN
REINFORCEMENT TERMINATED WITH

ACI STANDARD HOODK .

AT LEAST '3 OF POSITIVE MOMENT RE INFORCEMENT
ACI STANDARD HOOK CONTINUOUS DR CLASS A TENSION SPLICED
0.25L e 1 0-30 or 9.3t1, 0.3L or 0.3t
[4bam] ™. GREATER CREATER o 1'3"{40@%1
el -j : cL
( 1 L2 [ i
— 1057 [ 40mm
1. / 1
; .
_ = |
» LSTIRHEJ’S_J L1254 g. 125, ‘%
2 150mm] L=CLEARSFAN ] S— 1”3”[40mn]CLR—}
CLEaR |, TV UNDER STIRRUPS
- o o

PERIMETER BEAM

e MIN. 6"[150mn}. UNLESS OTHERWISE SPECIFIED BY THE ARCHITECT/ENGINEER

Note: Check available depth, top and botiorn, for required cover on ACI standard hooks. At each end suppert, add top bar 0.25L in length 1o equal area of bars
required. See also Chapter 12 and Chapter 21 of ACI 318 (318M). Bar cutoff details must be verified to provide required development of reinforcerment.

Fig. 2~~Typical details for beams.




315-20 ACI STANDARD
PART C—FIGURES AND TABLES

AC1 STANDARD HOOK
{TILT FROM VERTICAL IF NECESSARY
TO MAINTAIN 34 [20mm]|CLEARANCE)

SIZE AND SPACING € SYMMETRICAL
! ABOUT ¢
BARS

[ fam—

% =T
112" [40mm]COVER /15\3«"[20m]cm—— A ..L.!.Ll.&..l
%

TEMPERATURE
'\

I
//7 EXTEND ALL BOTTOM X=BAR SPACING
BARS INTO SUPPORT
/ {PER AC] 318[318M].3ECT.12.11) “—-SLAB THICKNESS
|.=CLEARSPAN SEC. A=A

SINGLE SPAN, SIMPLY SUPFORTED

ACI STANDARD HODK
{TILT FROM VERTICAL IF NECESSARY
TO MAINTAIN 3 [20mm]CLEARANCE)

B
SIZE AND SPACING
zf_As TABULATED 3,/ [20mm]CLR -SLAB THICKNESS
3 0.23 374" {20mm) 0.3L 0 0.3L O
] ’ : IS TEMPERATURE
AV / CLEA 0. 3.1 ‘Tsﬁa‘l
wY gj R”T GREATER GREATER | |, | BARS ]
g %ux L) %] >3 j
. ZAM f
112" [40mm] COVER 4 10
;27 EXTEND ALL BOTTOM 8
/// BARS INTO SUPPORT " X=SPACING
///’fPER ACH 318[318K]SECT.$2.11} TABULATED
: L=CLEARSPAN L1
SEC. B-B
END SPAN, SIMPLY SUPPOHRTED
, 3, [20mm] € SYmMETRICAL
‘ CLEAR. T ABOUT €
¢ 0.3L OR 0.3L1 0.3L DR O0.3L [
1 GREATER GREATER Ii Y“QEQQE““T“RE
i ‘o4 | .|
: ' (i
: L 4 | for—o——g
L L EZOm-n] J 1 1 F 1
A
0.125L CLEAR — Xl Kol X
= l X=SPACING
c TABULATED
1 TCILERRSPAN SLAB THICKNESS
INTERIOR SPAN, CONTINUOUS
SEC. C~C

S MIN., 67[150mmi. UNLESS OTHERWISE SPECIFIED BY THE ARCHITECT/ENGINEER

Note: Unless noted otherwise, tables and figures are based on ACI 318 (318M). Goncrete cover shown is minimum and should be increased for more severe
conditions. Except for single span slabs where top steel is unlikely to recelve canstruction traffic, top bars lighterthan No. 4 at 12 in. (Mo. 13 at 300 mm) are not rec-
ommended. For a discussion of bar support spacing, see Section 5.4 of this standard. See also Chapter 12 of AC1 318 (318M). Bar cutoff details must be verified
1o provide required development of reinforcement.

Fig. I—Typical details for one-way solid slabs.




DETAILS AND DETAILING OF CONCRETE REINFORCEMENT J15-21

AT LEAST lvy OF POSITIVE MOMENT
RE INFORCEMENT TERMINATED WITH
AC| STANDARD HOOK

TIRRUP SUPPORT BARS AT LEAST W OF PDSITIVE MOMENT RE INFORCEMENT
AC1 STANDARD HOOK {IF NECESSARY) CONTINUGOUS OR CLASS A TENSION SPLICED
A
0.258 }1,5' 0.35L or 0.3L1 0.3L or. 0.3U1
—C4L mm) GREATER GREATER . 41" 140mm] CLR
X 1 = T
[ / L
, 114" [ 40RTM)
{A / CL§[
» L ] T
STIRRUPS— 101250 Q:.125L1 4 1le* [ 40mm] CL R~
2*[Somm] L=CLEARSPAN L UNDER STIRRUPS
CLEAR Jhat S P vy SEC. A-A

NON-PERIMETER BEAM WITH OPEN STIRRUPS

TIRRUP SUPPDRT BARS
ACT STANDARD HOOK CIF KECESSARY)

g
0. 250 L 0.3 or 0.3L1 0.3L or 0.3
_} 4bem) T RTER ~GREATER - — 112 [40mm]CLR

A

T %
Tk e

[7 1

7

T
s $TRAUPS— Q.125. ! % 0.125] 8

L=CLEARSPAN L
ot S it 1'-" [ 40mm]CLR

I\ NDER STIRR
NON-PERIMETER BEAM WITH CLOSED STRAUPS unoE ups
‘ sEC. 2-8

2" |50mm
CLEA

AT LEAST 1/6 OF NEGATIVE MOMENT REINFORCEMENT
AT LEAST 'vy OF PDSITIVE MOMENT CONTINUDUS OR CLASS A TENSION SPLICED AT MIOSPAN
RE INFORCEMENT TERMINATED WITH
AC1 STANDARD HOOK

AT LEAST 's4 OF POSITIVE MOMENT REINFORCEMENT
ACI STANDARD HOOK CONTINUQUS DR CLASS A TENSIDN SPLICED
0. 251 gta7 1030 o 0,301 0.3, or 0.3L1
—_ é“ mm| . GREAIER GREATER ¢ 1"§"§40m]
L. l cL
— 115" [40mm
{ ,/ g (o]
L
L 0] .
ket STIRRUPS— 12 .125 . j_
2*{50mn L=CLEARSPAN — - L 14, | 40mmICLR
CLEAR | —NV UNDER STIRRUPS
PERIMETER BEAM SEC. C-C

& MIN, 671150mm]. UNLESS DTHERWISE SPECIFIEC BY THE ARCHITECY/ENGINEER

Note: Check available depth, top and bottom, for required cover on ACI standard hooks. At each end support, add top bar 0.25L in length to equal area of bars
required. See also Chapter 12 and Chapter 21 of ACI 318 (318M). Bar cutoff details must be verified to provide required development of reinforcement.

Fig. 2—Typical details for beams.




315-22

ACI STANDARD HODK

ACI STANDARD

AC] STANDARD HOOK {BAR SIZE SAME AS SMALLER
BOTTOM BAR IF HOCGK WILL FI1T:
SMALLER BARS TD PROVIDE SAME AREA OF STEEL)

OTHERWISE USE TwWO

20
OTHERWISE 180"

2" [50mm

ACI STANDARD HODK
DN AT LEAST ONE
BOTTOM BAR

AT LEAST ONE BOTTOM BAR CONTINUOUS

IF HOOK WiLL FiTs

7
% BIST.RIE AS SYMMETR [ CAL TEMPERATURE
é 0.251 NOTED 47 [100mm] ABOUT £ RE INF ORCEMENT
2"]50mm| | & ¢ [20mm]  |MIN- WIDTH A
COVER d 1204 [#13 ] ~TOP SLAB
‘//: J cLesR ya L. 1
o— . I
L L7 | 260m] CLR. ALL BARS L] 5 Jgri?a FORM
A P 12 DEPTH .
b7 zxreuo ALL BQTTOM j _
% f EXRE INTE S / 20" 0R 30"
L2 (PeR AC1 S18131BWISECT 12,11 “GEvaL usep o [5080r 762mm]
/ 2-m4 [#13] (WHERE REQ'D) cnmpunnnns FORM WIOTH
/ AS NOTED
% L=CLEARSPAN
7 - JOIST WIDTH—
SINGLE SPAN JOIST CONSTRUCTION = AR
DIST. RIB AS NOTED Q_ SYMMETRICAL
OR CLASS A TENSION SPLICE'—'—'—'———\ 4”[100mm]MIN. WIDTH /ABDUT 4
) B TEMPERATURE
0.3L OR 0.3L1 0.3L OR 0.3L1 RE INFORCEMENT
GREATER GREATER
/ ~T0° SLAB
| :
E.—:._/ é”. | \e
I
20" DR 30"
u 34" [20mm) JOIST DEPTH iS0Bor 762mm)
CLR.ALL BARS BEVEL USED FO FORM WIDTH
0. 1250 0. 1251 COMPUTATIONS AS NOTED
L1 L=CLEARSPAN . |
8 JOIST WIDT!
INTERIOR SPAN JOIST CONSTRUCTION SEC. B-B

—ACT STANDARD HODK

AT LEAST ONE BOTTOM BAR CONTINUOUS

s0* IF HOOK WILL FIT: OTHERWISE 180" OR CLASS A TENSION SPLICE
2 3.7l 20mm]CLR. ALL BARS TEMPERATURE
“z DIST.RIB AS
g a.25.  NOTED 47 [100r'rn] RE INFORCEMENT
2" [somm] |4 3 [20mm] IN. ¥IDTH Q.3 R 0. 3(1 3L OR 0.3LY,. ~TOP SLAB
i
ol A [#13\ GREATER GREATER I l
A
= !
/ { h FORM
= ] A
1 " -
" 7 20" DR 30
___4_1.42 [somml 12 \-msuo sl soriow | 01251, JOIST DEPTH }| [ts0sorrezmm
CovER 1 17 BARS INTO SUPPORT BEVEL USED FOR FORM WIDTR
? {PER ACT 318[318M]SECT.12.11} COMPUTATTONS 45 NDTED
. L.=CLEARSPAN L1
7 ) TTT
Z C.J JOIST WIDTH

ACI STANDARD HOOK ON
AT LEAST ONE BOTTOM BAR

END SPAN JOIST CONSTRUCTION

SEC. €=C

Note: See also Chapter 12 and Section 7.13 of ACI 318 (318M). Bar cutoff details must be verified 1o provide required development of reinforcement.

Fig. 3—Typical details for one-way joist construction.




DETAILS AND DETAILING OF CONCRETE REINFORCEMENT

1.5 BAR

MUK
DISTANCE

| ~LOWER B4R e

£ pme—UPPER BAR

SECTION A-A

LOWER BAR
UPPER BAR

SECTION B.-8!
ACCEPTABLE ARRANGEMENT FOR

31523

1.5 BAR
DIAMETERS
MINIMUM
DISTANCE
113" 40mm)

LOWER B4R

UPPER BAR

gl
B-B

SECTION
PREFERRED ARRANGEMENT

Y MAXIMUM NUMBER OF BARS  wmm
LAP SPLISE
g '
-
@®
=
2 LAP SPLICE IF
= OFFSET _LESS
L THAN 37 {80mm|
]
-
[}
[-:]

T 80mm) MAK ..

757 MAX.
67[150mm] MAX

BOTTOM BEND :

TIE SIZE 45 — | N
REGUIRED BY M
STRUCTLRAL DWGS o
B s
A A bl
n' lv pond

C

SECTION A-A

DETAIL SHOWING TYPICAL
INTERLCR TIED COLUMN

SECTION A-A
(Z) DETAIL SHOWING TYPICAL
SPIRAL COLUMK

A
] P [
. d |l TR
% e r _} - an
. .l 5 A A L 2] [ J
3 M’ SECTION A-A
o (A Y ey T
Zln B D R
* = -—
% N I A BOTTOM LAYER . .
EA SLAB STEEL r _* . .
E » - [ ]
] o I R 1 B
B s SECTION B-B
'
X L
L 3-.";'-'1'-1 ’
» . e TIE SIZE AS
) % e REQUIRED BY \
N 3 e STRUCTURAL DWG.
wn x i ety w
2 W FIp = =
= L —
13 = r —+
i L7
: iy
= . ;
P N O ] i
— I il
¥ ¥ a B

DETAIL TYPICAL £DCE COLUMN
WITH SPANDREL BEAW

FULL MOMENT LAP
SPLICES WITH NO OFFSET

(E)BETAIL FULL MOMENT CAPACITY SPLICE

Note: Where colurmn size above is unchanged from below, “upside down” offset bars are effective in maintaining full moment capacity
at end of cokumn. s U.S, practice, this unusual detail is rare, and should be fully illustrated on structural drawings to avoid misunder-
standings, whenever its use Is deemed necessary. For maximum tie spacing, see table in Supporling Reference Data section.

Fig, 4—Column splice details.




16

Design of Two-Way
Floor Systems

B 16.1 GENERAL DESCRIPTION

In reinforced concrete buildings, a basic and common type of floor is the stab-beun-
girder construction, which has been treated in Chapters 8, 9, and 10. As shown in Fig.
16.1.1{a), the shaded stab area is bounded by the two adjacent beams on the sides and
portions of the two girders at the ends. When the length of this area is two or more tmes
its width, almost all of the floor load goes to the beams, and very little, except some near
the edge of the girders, goes directly to the girders. Thus the slab may be designed asa
one-way slab as treated in Chapter 8, with the main reinforcement parallel to the girder
and the shrinkage and temperature reinforcement parallel to the beams. The deflectcd
sutface of a one-way slab is primarily one of curvatare in its short direction.

When the ratio of the long span L to the short span § as shown in Fig. 16.1.1(b) is
less than about 2, the deflected surface of the shaded area becomes one of curvature in
both directions. The floor load is carried in both directions to the four supporting beams
around the panel; hence the panel is a two-way slab. Obviously, when § is equal to L, the
four beams around a typical interior panel should be identical; for other cases the longer
beams take more load than the shorter beams.

Two-way floor systems may also take other forms in practice. Figures 16.1.2(a) and
(b} show flat slab and flat plate foor constraction. These are characterized by the absence
of beams along the interior column Hnes, but edge beums may or may not be used at the
exterior edges of the floor. Flat slab floors differ from flat plate floors in that slab foors
provide adequate shear strength by having either or both of the following: (2) drop panels
{i.e., increased thickness of slab) in the region of the columns; or (b) column capitals

Li
la

(——

s
R

{a) {b}
Figure 1611 One-way vs, two-way slabs.
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16.1 General Description -+ 621

S, e S e 3
Flat slab {walfle sth) with capitals in the Fisher Cleveland Plant.
{Courtesy of Porthil Cumuent Association.)

(i.c., tapered enlargement of the upper ends of cohmmns). In flat plate Roors a uniform
slab thickness is used and the shear strength is obtained by the embedment of multiple-U
stirrups, structural steel devices known as shearhead reinforcement [see Fig. 16.18.1{b)],
or shear stud reinforcement {see Fig. 16.16.2] within the slab of uniform thickuess.
Relatively speaking, flat slabs are more suitable for larger panel size or heavier loading
than flat plates.

N

-

FTX 7 Drop panel

- imd
TN v -—;]-!f-é)—

———IH } o =
! ~

L:TSJ L..._'i.tl. ;
|

u.,:l_"_
1

Column capital
|

Coturmn™Y! Drop panel
capital

{a} Fiatslab floor {b) Flat plate floor
Figure 16.1.2  Flat slab ancl flat plate floor construction.




622 Chapter 16. Design of Two-Way Floor Systems

Ristorically, flat slabs predate both two-way slabs on beams and flat plates. Flat shb ;
lloors were originally patented by O, W. Norcross [16.2] in the United States on Aprl £
29, 1902. Several systems of placing reinforcement have been developed and patented
since then—the fowrway system, the two-way system, the three-way system, and;the
eircumferential system, C. A. P. Turner [16.2] was one of the early advocates of a lat
slab system known as the “mushroom” system. About 1908, the flat slab began heing
recognized as an acceptable floar system, but for many years designers were confronted
with difficulties of patent infringements.

Actually the terms two-way slab [F ig. 16.1.1(b)), flat sleb (Fig. 16.1.2(a)], and flat
plate [Fig. 16.1.2(b)] are arbitrary, because there is in fact two-way action in all three types
and a flat (usually nearly square) ceiling area usually exists within the panel in all three
types. Following tvadition, the implication is that there are beams between columns in
two-way slabs; but no such beams, except perhaps edge beams along the exterior sides of
the entire floor avea, are used in flat slabs or flat plates. From the viewpoint of structual
analysis, however, the distinction us to whether or not there are beams between columas
s not pertinent, because if beams of any relative size could be designed to interact with
the slab, use of beams of zero size would be only the limit condition.

If methods of structural analysis and design are developed for two-way slabs with
beams, many of these general provisions should apply equally well to Hat slabs or fla
plates. Until 1971 the design of two-way slabs supported on bearns was, historicall,
treated separately from the flat slabs or flat plates without beams, Various empirical
procedures have been proposed and used [16.6-16.8], Chapter 13 of the present ACI
Code takes an integrated view and refers to two-way stab systems with or without beams,
In addition to solid slabs, hollow slabs with interior voids to reduce dead weight, slbs
{such as waflle slabs) with recesses made by permanent or removable Allers between
joists in twe directions, and slabs with paneled ceilings near the central portion of the
panel are also included in this category (ACI-13.1.3). ‘

Thus the term two-way floor systems (rather than the term two-way slab systems as
in the AC! Code) is used in this book to include all three systems: the two-way slab with
beams, the flat slab, and the Aat plate.

# 16.2 GENERAL DESIGN CONCEPT OF ACI CODE

"The busic approach to the design of twa-way (loor systens involves imagining that vertical
cuts are made through the entire building along lines midway between the cobumns,
The cutting creates u series of franes whose width lies between the centerlines of the
two acjacent punels as shown in Fig, 16.2.1. The resulting series of rigid frames, taken
separately in the longitudinal and transverse directions of the building, may be treated for
gravity loading floor by floor, as would generally bo acceptable for a vigid frame structure
consisting of beams and columns, in accordance with ACE-8.9.1, A typical rigid frame
waould consist of (1) the eolumns above and below the Hoor, and (2) the foor system,
with or without beams, bounded laterally between the centerdines of the two pancls {one
panel for an exterior line of columns) adjacent to the line of columns,

Thus the design of a two-way floor system {includin g two-way slab, flat slab, and flat
plute) s reduced to that of a rigid frame; hence the nume “squivalent frame method.”

As in the case of design of actual rigid frames consisting of heams and cofumns,
approxiniate wmethods of analysis inay be suituble {or iy usual floor systems, spans,
and story heights. As treated in Chapter 7, the analysis for actual frames could be
(2) approximate using the moment and shear coefficients of ACI-8.3, or (b) more ac-
curate using structural analysis after assuming the relative stiffnessos of the members.
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Figure 16.2.1 “Tributary floor area for an interior equivalent rigid frame of a two-way loor system.

For gravity foad only and for fioor systems within the specified limitations, the moments
and shears on these equivalent frames may be determined {a) approximately using mo-
ment and shewr coefficients preseribed by the “direct design method” of ACL-13.6. or
{h) by structural analysis in 2 manner similar to that for actual frames using the special
provisions of the “euivalent frame method” of AC1-13.7. Ao elustic analysis (such as by
the equivalent frame method) must be used for lateral loud even if the floor system macts
the limitations of the direet design method for gravity load.

The equivalent rigid frame s the structure betng dealt with whether the moments are
determined by the “direct design method (DDM)” or by the “equiivalent frame method
(EFM).” These two ACT Code terms describe two ways of obtaining the longitudinal
varfation of bending moments and sheacs.

When the “equivalent frame metbod” is used for obtaining the longitudinal vastation
of moments and shears, the relative stiffness of the columns, as well as that of the (loor
system, can be assumed in the prefiminary analysis andt then reviewed, as is the case for
the design of any statically indeterminate structure. Design moment envelopes may he
obtained for dead load in combination with various pattems of live load, as described in
Chapter 7 {Section 7.2). In lateral load analysis, moment magnification in cohimns dueto
sidesway of vertical loads must be taken into account as prescribed in ACT-10.11 through
10.14.

Once the longitudinal variation in factored moments and shears has been oltained,
whether by ACL“DDM™ or “EFM,” the moment cross the entire width of the floor
system being considered is distributed laterally to the beam, ifused, and to the slab, The
latesal dlistribution procedure and the remainder of the design is essentially the same
whethor "DIM” or “EI'M ™ has heen used.

The aceuracy of analysis methods utilizing the concept of dividing the stencture inte
eoprivalent frames has been verified Tor gravity load analysis Dy tests [16,12-16.25] and

analytical studies [16.26-16.35]. Vor lateral load analysis where there is loss agreemoent
on procedure, vrious studlies have been made, including those of Pecknold [16.38], Allen
and Darvall [16.39, 16.47}, Vaderbilt [16.32, 16.40], Elius [16.41-16.43], Fraser 16,441,
Vanderbilt and Corley [16.45], Lew and Nurov [1G.46), Pavlovic and Poulton {16.48],
Mochle aud Diehold [16.49], Hsu [16.50], and Cano and Klingner [16.51 3
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5 16.3 TOTAL FACTORED STATIC MOMENT

Consider two typical interior panels ABCD and CDEF in a two-way Hoor system,
shown in Fig. 16.3.1(x). Let L; and Ly be the panel size in the longitudinal and trusverse

directions, respectively. Let lines 1-2 and 3-4 be centerlines of panels ABCD and CDEF,
both parallel to the Tongitudinal direction. [solate as « free body [see Fig, 16.3.1(h)] th:
Howr stals and the included hoawm homded by the lines 1-2 wnd 34 in (he longituding
direction and the transverse lnes U3 and 2~d4' at the faces of the colwnns i the
transverse direction. The Jowd acting on this Iree body [see Fig, 16.3.1(c)] is woly per
unit distance in the longitudinal direction, The total upward force acting on lines -3
or 24" is w, Lk, /2, where wy is the factored load per unit area and L, is-the clear span
in the longitudinal divection between faces of supports (as defined by ACI-13.6.2.5).

TE My andd Mg are the numericai values of the total negative and positive bending
moments along lines 1-3" and 56, then equilibrium of the frec body of Fig. 16.3.1id)
recuives

- 2
Mg + Mg = 5‘-’—‘;—-{- (16.3.1)

Yora typimll exterior pancl, the ncgativc moment at the interior support would he
farger than that at the exterior support, as has been shown in Section 7.5. Thae -
i positive moment would oceur at a section to the lelt of the midspiur, as show in
Fig. 16.3.2{c). In practical design, itis customnuy to use My, ab midspan for determining

w, Ly per unit distance
Mm(t_t ¥ 1V ¥ 3. F1)Mm

Ny
Clear span = £,
“E:Lz Ln (C) %L2 Ln
iy 2 2

| E
¢ ’ .‘
! 2 29 ¥
i ! Center finel w i, "—E
: I | %LZ Ln 2
—— e e 2
[j __________ 7 (e}
' Factored ! M
floor toad —  BOE
! T
[ =W per unit area% P &N
n 0
A s TN
, M:\ag Mneg
{bj le}

Figure 16.3.1 Statics of 2 typical interior panel in a bwo-way floor system,
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Figure 16.3.2  Statics of typical exterior panel in a two-way Hloor system.

the required positive moment reinforcement, For this cuse,

My {left} + M (right) Wy Le L2
2 8

A proof lor Ky (16.3.2) can be obtuined by writing the moment eeoilibrium equation
about the folt end of the {ree body shown in Fig. 16.3.2(a),

WeLaly { Ly L,
Mm.'g(ie&) + -l"fpzl.\’ == o (___r_) - "’mi«.’lsp;m (""'"")

! 'Ipu w = ( 1(33.2)

2 4 2

and, by writing the moment equilibrinm equation about the right end of the free body
shown in Fig. 16.3.2(h),

N wy Lal, L, L,
1"[“:-3:(“\9;]“) + 'f"Ipme = "‘2"5}—”" (""‘“'["') + Vmidxp:m (':..3"")

Equation (16.3.2) is arrived at by adding the two preceding equations and dividing by 2
on each side. Note that Eq. (16.3.2) may also be obtained, as shown in Fig. 16.3.2(c), by
the superposition of the simple span uniform loading parabolic positive moment diagram
over the trapezoidal negative moment diagram dlue to end moments.

ACI-13.6.2 uses the symbol My to mean w, LaL2 /8 and culls My the total factored
static moment. [t states, “Absolute sum ol positive and average negative factored moments
in each direction shall not be less than My”; or

Myeg(ieft) -+ Macgiright)

) {16.3.3)

5.0 Lot L;’.
+ My 2 |:Mn = ‘f———]

8
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in which

i tey = factored load per unit area

L, = clear span in the direction moments are being determined, measured face 4
face of supports (ACI-13.6.2.5), but not less than 0.65L 1 g

L1 = spanlength in the direction moment ave being determined, measured cente
to-center of supports

Lg = transverse span Iength, meusured center-to-center of supports

Equations (16.3.1) and (16.3.2) are theoretically derived on the basis that M, g (left), ;
Myos, and Mgy (right) occur simultaneously for the same live load pattern on the ad-
jacent panels of the equivalent rigid frame defined in Fig. 16.2.1, If the live load i
relatively heavy compared with dead load, then cifferent five load patterns should be
used to obtain the critical positive moment at miclspan and the critical negative moments
at the supports. In such a case, the “equal” sign in Egs. (16.3.1) and (16.3.2) becomes
the “greater” sign. This is the reason why ACI-13.6.2.2 states “absolute sum . . . shall not
be less than My” as the design requirement. The designer should keep this in mind :
when steel reinforcement is selected for positive and negative bending moment in two-
way floors when the direct design method is used for gravity load. Fo avoid the use |
of excessively smalt values of My i the case of short spans and large columns or col-
umn capitals, the clear span L, to be used in Eq. (16.3.3) is not to be less than 0.65L;
(ACI-13.6.2.5).

When the limitations for using the direct design method are met, it is customary to
divide the value of My into Miyey into Mo, if the vestraints at each end of the spanase 4
identical (Fig. 16.3.1); or into (Mg (left) + Mg (right)1/2 and M if the span end
restraints are different (Fig. 16.3.2). Then the moments Moy (left), My {vight), and
Mpos must be distributed transversely along the lines -3, 24, and 5-8, respectively.
This last distribution is a function of the relative flexural stiffness between the skalrand
the facluded beam.

Total Factored Static Mbment in Flat Slahs

The ability of flat slab floor systems to carty load has been substantiated by numerous
tests of actual structures [16.2]. However, the amount of reinforcement used, say, i
a typical interior panel, was less than what it should be to satisfy an analysis by stat-
ies, as is demonstrated in this section. This Jed to some controversy [16.1], but sfter
studies by Westergaard and Slater {16.3), a provision was adopted (about 1921} nto
the code that a reduction of moment coefficient from the statically required value .
of 0.125 to 0.09 may be made. This reduction was not regarded as a violation of

statics but was used as a way of permitting an increase in the usable strength. The
reduction, moreover, was applicable only to flat slabs that satisfied the limitations then

e

%

20

= specified in the code. Over the years these limitations had been liberalized, but at the
i%; same time the moment coefficient was raised to values closer to 0.195. The present ACI
4 Code logically stipulates the use of the full statically required coefficient of 0.125.

o

The statical analysis of a typical interior panel was first made in 1914 by Nichols
[16.1] and further developed later by Westergaard and others [16.3-16.5].

Consider the typical interior panel of a flat slab floor subjected to a factored load of
Wy per unit area, as shown in Fig, 16.3.3(a). The total load on the panel area (vectangle
minus four quadrantal areas) is supported by the vertical shears at the four quadrantal
ares. Let Moy and Mpes be the total negative and positive moments about  horizontal

!
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Figurg 1633 Statics of  typicul intedor panel in 2 fat slab Aoor system.

axis in the Ly direction along the edges of ABCD and EF, respectively. Then

load on area ABCDEF = sum of reactions at arcs AB and CD

Lng 71’62
st\TeT Ty

Considering the half-panel ABCDEF as & free body, recognizing that there is no shear at
the edges BC, DE, EF, and F4, and taking moments about axis 1-1,

(Lils m\ ey wlilg (I wmed (2
Mu-g“{" “”Ipus + ey (_'2""' b "E_’,—) (;) - ""‘""2'—"" (_4') + ""'"'é"""" ("."i;r") =0
Letﬁﬂg M() = Mu('g + Mp(m

3 5, \2
My = b, Lo L3 (1 - ;‘% + %'??.I?‘%) ~ b, 2L} (1 - %ﬁl-) (16.3.4)
* Actually, Eq. (16.3.4) may be more easily visualized by inspecting the equivalent interior
span as shown in Fig. 16.3.3(b).

ACI-13,6.2.5 states that circular or regular polygon shaped supports shall be treated
as square supports having the same area. For flat skabs, particularly with column capitals,
the clear span L, computed from using equivalent scquare supports shonld be compared
with that indicated by Eq. (16.3.4), which is Ly minus 2¢/3. In some enses the lutter value
is larger and should be used, congistent with the fact that ACI-13.6.2.2 does express its
intent in an ineqguality,

Design Examples

In an effort to present, explain, and illustrate the design procedure for the three types of
two-way floor systems, identified in this chapter as two-way slabs (with beams), flat stabs,
and flat plates, it will be necessary to assume that preliminary dimensions and sizes of the
slab (and drop, if any), beams, and columns (and column capitals, if any) are available.
In the usual design processes, not only the preliminary sizes may need to be revised ws

-
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> EXAMPLE 16.3.1

they are found unsuitable, but also designs based on two or three different relutive b
sizes {(when used) to slab thickness should be made and compared. Preliminary daca for-

the three types of two-way floor systems to be Hustrated are as follows,

Data for Two-Way Slab (with Beams) Design Example

Figure 16.3.4 shows a two-way slab floor with a total area of 12,500 sq ft. It is divided
into 25 panels with a panel size of 25 ft x 20 ft. Concrete strength is £ = 3000 psj and
steel yield strength is £ = 40,000 psi- Service tive load is to be taken us 138 pst. Stery
height is 12 ft. The preliminary sizes are as follows;: slab thickness is 67 in., long heas
ate 14 x 28 in. overall; short beams are 12 x 24 in. overall; upper and lower columns
are 15 x L3 in. The four kinds of panels (corner, long-sided edge, short-sided edge,
interior) are numbered 1, 2, 3, and 4 in Fig. 16.3.4.

(g B 3 & & 5]
1 2 fl=3ksi
s} £ £ oz boa| o)) £ =40 ksi
Service LE = 138 psf
3 4 L Story height = 12 ft
V. —a—p a4 18
~}— ¥ Assume: .
W ; < Slab thickness = 6 1
£ £ & £ 53 g
S Long beams 14 X 28
[te3
3 4 overall
5 £ o £ ) d) Short beams 12 X 24
- overal!
L 2 " Columas 15" X 15"

Caul o ad
T L==) L ) L=
e s@25 -2 ]
Figure 16.3.4 Fioor plan in design exaiple for bwo-waty slab with beams,

For the two-way slab {(with beans) design example, determine the total factored static
moment in a loaded span in each of four equivalent rigid frames whose widths are des.
ignated A, B, C, and D in Fig, 16.3.5,

SOLUTION  The Factored Toad ty per unit foor aren is

e = L2wp + LBy = 1.2{6.5)(150/12) + 1.6(138)
=95 + 221 = 310 psf

T 0 l: o I *_L,J}_
!
1
. e b !
ST g oo
U A 1 {
& . ; ! !
o~ l ] ! _L[}‘
& | I[
E I s S | |
H T
L T E Il

. 5@25 =125 5@25' =128

Figure 1635 Equivalent rigid frame notations in the two-way slab (with baams) design example,

> EXAMPLE 1!
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overall
bearns 12 X 24
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38)
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{or [rame A,
for frame B,
for fame C,

for frame D,

16.3 Total Factored Static Moment < 629

My = geo, Lol = HO.319)(20)25 ~ 1.25)% = 448 fi-kips
Mo = 224 R-kips
Mo = gweLaL = §(0.319)(25)(20 ~ 1.25)% = 350 fi-kips
My = 175 ftt-kips

Data for Flat Slab Design Example

Figure 16.3.6 shows a flat slab floor with a total arca of 12,500 sq ft. It is divided into 25
panels with a panel size of 25 x 20 ft. Concrete strength is £ = 3000 psiand steel yield
strength is f, = 40,000 psi. Service live load is 140 psf. Story height is 10 ft. Exterior
columns are 16 in. square and interior columns are 18 in. round. Edge beams are 14 x
24 in. overall. Thickness of slab is 7} in. outside of drop panel and 104 in. through the

- drop panel. Sizes of column capitals and drop panels are as shown in Fig, 16.3.6.

Compute the total factored static moment in the long and short directions of an interior

panel in the flat slab design example as shown in Fig. 16.3.6. Compare the results obtained
by using Egs. (16.3.3) and (16.3.4). :

SOLUTION  Neglecting the weight of the drop panel, the service dead load is (150/

12)(7.5) = 94 psk, thus

1wy = 1.2wp + 16wy, = 1.2{94)} 4+ 1.6(140) = 113 + 224 = 337 pst

L =25
- L Sy et oy
ﬂfﬂ _} ! /, [N e O
"~ - = I W o e
IS Lt =3k L
- £, = 40 ksi
Service LL = 140 psf s
3 Story height = 10 ft t;l
1
)
18" diam 5,_0;; . 4
g column $?
" Tl 4 g = Ny iy £ i~
A (7= T r/4—-6‘ [ ™ 1% "; 1 /’ AN J
& e ) T Tl B RN
@ S<__J - (I, Sl 2 L2
16" sq. column 8’4" g:_ i
1 2
14" X 24" edge beams ;
M5 1 et by |
I
; 5 @25 = 128’

Figure 16,36 Flat slab design example.
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» EXAMPLE 16.3.3

Using Eq. (16.3.4},
b o
Mo = b L2 (11— 25N = Loaamyes of1 2 260 T 2 age pts
My = gw, LaL; (.[ 3[_.;) = {(.337}(20)(25) [1 sy = 396 ft &aps !
{in long direction) :
2 \? 2s) 1° '

1 af. %N el1 ,_ Tt

Mo = Al LyL3 (I SLx) = 5((}.337')(25)(.‘2.0) [1 3(20)] =203 ft klps )

{in short direction)

The equivalent square area for the column capital (ACI-13.6.2.5) has its side eqult
443 f; then, using Eq. (16.3.3), with L, measured to the face of capital (i.e., equivdont
square),

Mo = §w, LaL? = HO337){20)(25 — 4.43)% = 336 ft-kips
(in Tong direetion)
Mo = gwaLsL? = §(0.337)(25)(20 — 4.43)® = 255 fe-kips
{in short direction)

» 164 RAL
OF;

Iusofar as fat slabs with cohunn capitals are concerned, it appears that the farger
values of 396 fe-kips and 293 fi-kips should be used because Eq. (16.3.4) is specially
suitable; in particular, ACI1-13.6.2.2 states that the total fictored static moment shal not
be less than that given by Fq. (16.3.3). |

Data for Flat Plate Design Example

Figure 16.3.7 shows a {lat plate floor with a total area of 4500 sq [k, Tt is divided into %5 ;
pavels with a panel size of 15 x 12 ft. Concrete strength is f7 = 4000 pst and steel yield .
strength is f, = 50,000 psi. Sevvice live load is 72 psf. Story heightis 9 fr. All columnsare
rectangular, 12 in. in the long direction and 10 in. in the short direction. Preliminary slab
thickness is set at 53 in. No edge beams are used along the exterior edges of the floor.

Compute the total factored static moment in the long and short directions ~f a typical
panel in the Hat plate design example as shown in Fig, 16.3.7.

& -3 . *

{1 No edge beams Live load = 72 psf |

1 3 4
8 .
u 10" i =4kl
b na} - J‘£ - 7, =50 ksi
@ 197 1T Service LL = 72 pst
i - Story height = 9 ft

1 2
1 ! !
= i : £
5@ 15 = 75’

Figure 1637 Flat plate design example.
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SOLUTION  The dead load for a 53-in. slab is
396 Rkipd ' wp = (5.5/12)(150) = 69 psf
' The factored load per unit area is
0y = 1.2wp + 1.6y, = 1.2(69) + 1.6(72) = 83 + 115 = 198 psf

Using Eq. (16.3.3), with clear span L,, measured face-to face of columns,

Mo = (0.198)(12)(15 — 1)® = 58.2 fe-kips

(in long direction)

Mp = §(0.188)(15)(12 — 0.83)* == 48.3 ft-kips

{in short direction) -«

nas its side eqai
tal (i.e., eq

Kips

F154 RATIO OF FLEfXURAL STIFFNESSES
OF LONGITUDINAL BEAM TO SLAB

When beams are used along the column lines in a tvo-way {loor system, an important
parameter allecting the design is the relative size of the beam to the thickness of the skab, !
This parameter can best be measured by the vatio oy of the flexural viggiclity (enlled flesurad
stiffness by the ACI Code) Eq1;, of the beam to the Hexural rigidity Eel, of the slab in ;
the transverse cross-section of the equivalent frame shown in Fig. 16.4.1. The separstte
moduli of elasticity Ey, and £, referring to the beam and slab, provide {or difterent
strength conerete (and thus different E, values) for the beam and slab. The moments of

-kips

cars that the
(16.3.4) is 5
ic moment

Tt 15 divided i

10 psi and steel yi8 4Y;
& ft. All columesy
won. Preliminary LT
edges ot the e .
= ~ TSIV
irections of a by Equivalent frame
L,
5
r_l L J
oo s |
I i 1
(a} Plan
: w 2 Ly
T i | ¢
f A
ek . i
gft [ .
A L !
75 ) {c} Cross section A-4
L‘[ LI
i
(b} Elevation -

Figure 1641 Plan, elevation, and cross-section of equivalent frame in a two-way floor system.
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» EXAMPLE 16.4.1

Be | i b¢ J
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{h~ti<de th-tMM[ {h—t)s4a;
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ACI-13.2.4 ACI-13.2.4 ACI-13.2.4 i

L.t L. %]

Figure 16.4.2  Cross-sections for momestt of inertia of a {Eangect section.

iertta f, and I reler to the gross seetions of the beam and stab within the Cross-section
of Fig. 16.4.1{c). ACI-13.2.4 permits the slab on each side of the bean web to act 14
part of the beam, this slab portion being limited to a distance equaj to the projection of
the e above or below the skals, whichever iy greaten, but not greater than four times 3
the slab thickness, as shown in Fig, 16.4.2. More accurately, the small portion of the sk
alreacy cornted in the beam should not be used in 7, but ACI permits the use of the
total wiclth of the equivalent frume in computing f;. Thug,

Ecb I
o =
T T RS

The moment of inertiz of a Hanved heam section about its own centroidal asis
Cl
{Fig. 16.4.2) may be shown to be

{16.4.1)

(16.4.22)

in which

()@ () (-]

where
i = overall beamn depth
t = overall slab thickness
b = effective width of flange
by = widtls of web

-

Equation (16.4.2b) expresses the nondimensional constant & in terms of (ba/by,) and
(¢/1). Typical values of & are tabulated in Table 16.4.1 and three curves are plotted in
Fig. 16.4.3. The values of k are about 1.4, 1.6,and 1.8, respectively, for by/b,, values of 2,
3, and 4, when ¢/h values are between 0.2 and 0.5, Thus

3]

be\ by
ke 10402 (;’f-) for2 < [—”- <4 und 0.2 < ;1- <05  (16.4.2¢)

o e

For the two-way slab (with beams) design example described in Section 16.3, compute
the ratio ay of the floxural stiffness of the longitudinal beam to that of the slab in the
equivalent rigid frame, for all the beams around panels 1, 2, 3, and 4 in Fig, 16.4.4.

i
i
]
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TABLE16.4.1 Valves of k in Terms of {be/b,) and {t/H in Eq.{16.4.2b}

t/h
by by 0.1 0.2 0.3 0.4 0.5 0.6 07 0.8 0.9 1.0

2 1222 1328 1366 L1372 1375 1396 1454 1365 LT43  2.000
3 1407 1564 1605 1.608 1.625 1604 1.844 2098 2477 3.000
4 1364 1744 L1777 L1781 1825 1956 2212 2621 3208 4.000

k=4
—m—
{ 1t
— ] 7
axis 1 / k=3
b,
I""t"’w'-l3 L B%=4 /A
I =k ’{2 //
k=2 e 4_._./;/,/{5 k=12
— s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 a8 1.0
tih
Figure 16.43 Values of k in terms o byb,, and 2 /h.

SOLUTION (a) BI1-B2. Referring to Fig. 16.4.4, the effective width bg for B1-B2 is
the smaller of 14 4+ 2(2L.5) = 57 in. and 14+ 8(6.5) = 66 in.: thus bg = 57 in. Using
Eq.(16.4.2b),

by 57 t 6.3

—— T — ,0-‘ _— —— =),

Y 4,07 7= 8 0.232
14(28)°

k=1.774, Iy = 1774 = 45,400 in.*

. 12
A slightly higher value of & would have been obtained using Ty, (16.4.2¢). Usinyg Ty,
(16.4.1}, where E., = E,
. Eal 45,400
= 5)3 ind, = =837
L ]2(240)(6 5)° == 5490 in o Pl TI50 7
(b) B3-B4. Referring to Fig, 16.4.4, the effective width by for B3-B4 is the smaller of
14 + 21.5 = 35.5 in. and 14 + 4{6.3) = 40 in.; thus bg = 35.5 in. Using Eq. (16.4.2D),
b,b‘ 35.5 E 6.5

220 mon4, L= o2 =0932
b, U4 254 h 28 S

3
14(1228) = 38,000 in.*

k = 1.434, Iy = 1.484
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£
Ll u! cl
w 25'_01'! i‘ 25’_0n | bf = 57 ) ) lf I‘bfﬁ&ﬁ
b8 L B2 1=
i a & T
- w | ;
- . 5
o |_LEid b 165 MINI
1 - A e R !
52 () <ar  [Then A ]
{typical for j -
. flange £3-84 s
44 o 1 2 2 projection)
s ;
'? . 8% L 84 :
i in b )
it Computed ay values be = 47" @
i 8.27 8.27 nnsus 5
& & 3 2 & @ u =~
"I i o o
:‘ 22 L 8w L 4= 12"H
i’§ - o o 85-86
ﬁ‘? 0 13.83 “r 3.83 ;'JJ--
f.f: Figure 1644 Computation of oy values in Example 16.4.1,
[ Using Eq. {16.4.1),
] 4
i3 ] =13 A | Ep Iy 38,000 - N
L, = S{120)6.5)* = 2745 in.", f = s = L = 13.83 4
uF 2{120)(6.5) I = ELl, ~ 2745 ]

{c} B5-B6. Referring to Fig. 16.4.4, the effective width bg for B5~B6 is the smallerof :'
12+ 2(17.5) = 47 in. and 12 + 8(6.5} = 64 in.; thus by == 47 in. Using Eq. (16.4.20),

otioes o Jorrtni b fausine

by 47 t 65 :

— e 308 - —— mm 3D 3 :

be 12 392, h 24 0271 3 ;
24)3
& k=1762, I,= 1.76212(1";) = 24,400 in.* 3
;i Using Eq. (16.4.1), ' ]
8 Egl, 24,000

& e L 3= in4 ..-—.:-—-Cb—b.:—‘——-n

-‘ ﬁ.! Iy = 5(300)(6.5)° = 6870 in4, oy Fl, 5570 3.50 ]
1! (d) B7-B8. Referring to Fig. 16.4.4, the effective width b for B7-B8 is the smallerof ‘.
?‘%} 124175 = 20.5 in. and 12 + 4({6.5) = 38 in; thus bg = 20.5 in. Using Eq. (16.4.2h},
ki .
o by 205 t
3 ,; b =15 = 2.46, 7= 0.271
& 3
3!': k=1480, I, = 1.48012(1‘24) == 20,500 in." E
Using Eq. (18.4.1), !
Ely, 20,500 i

L= 5(50)6.5° = 3435 int,  ap = =

S5 i)
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16.8 Minimum Slab Thickness for Deflection Control -5 635

The resulting oy values for B1 through B8 around panels 1, 2,3, and 4 are shown in
Fig. 16.4.4. For this design, the ay values vary between 3.50 and 13.83; thus the equivalent

rigid frames have their substantial portion along or close to the colummn lines, even though
their wiclths vary from 10 to 25 ft. <

185 MINIMUM SLAB THICKNESS FOR DEFLECTION CONTROL

Control of deflections in two-way floor systems is dealt with in ACI-9.5.3. When deflec-
tions are computed according to ACI-9.5.3.4, then ACI-Tuable 9.5(b) states the maximum
permissible computed deflection. To compute deflections, the use of the effective mo-
ment of inertia I, Eq. (14.4.1), is endorsed unless computed deflections using other
procedures are “in reasonable agreement with results of comprehensive tests.” Vari-
ous methods for obtaining deflections of two-way floor systems have been proposed

_ [16.52-16.71}; however, no specific procedure is given by the ACI Code or Commentary.

Computation of two-way floor system deflections is outside the scope of this book.

To «id the designer, ACI-9.5.3.2 provides a minimum thickness table [ACI-Table
9.5{c}] for slabs without interior beams, though there can be exterior boundary beams.
For slabs with beams spanning between the supports on all sides, ACI-9.5.3.3 provides
minimum thickness equations. If the designer wishes to use lesser thickness than indicated
by ACI-9.5.3.20r9.5.3.3, ACT-9.5.3.4 permits a lesser thickness “if shown by computation
that the deflection will not exceed the limits stipulated in Table 9.5(b)." Computation of
deflections must “take into account size and shape of the panel, conditions of support, and
nature of restraints at the panel edges.” Minimum thickness from ACI-Table 9.5(c) and
the formulas of ACI-9.5.3.3 give slab thicknesses that, from experience, are considered
satisfactory.

Slabs Without Interior Beams Spanning Between Supports

The minimun thickness, with the requirement that the ratio of long to short span be not

~ greater than 2, shall be that given by Table 16.5.1 {ACI-Table 9.5(::)], but not less than:

For slabs without drop panels 5 in.
For slabs with drop panels 4 in.

In the flat slab and flat plate two-way systems, there may or may not be edge beams
but there are definitely no interior beams in such systems. Thus, for the flat slab and fat
plate, the ACI code requires the minirmum slab thickness to be obtained from ACL-Table

TABLE165.1 Minimum Thickness of Slah Without Interior Beams [Adapted from ACI-Table 9.5{c)}

Without Drop Panels! With Drop Panels!
f; Exterior Panels Interior Exterior Panels Interior
(ksi) o =0 oy 208 Panels ar=0 ar > 0.8 Panels
L. L, L, L, L | L
4 9 3% 36 36 40 40
Ly C Ly Lo L, Ly Im
60 30 33 33 33 36 36
L, L, L, L, Lo | L
™ 28 31 3l 31 3 54

*For f,,- between 40 and 60 ksi, min ¢ s to be obtained by lincar interpolution.
YDrop panel is defined in ACI-13.3.7.1 and 133.7.2.

|
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9.5(c) (i.e., Teble 16.5.1), whereas in the past such minimum thickness could also he
obtained frow ACI Formulas,

Slabs Sepported on Beams

Four parameters affect the equations of ACT-9.5.3.3 for slabs supported on heams on
all sides; they are (1) the longer clear span L, of the slab panel; (2) the ratio 8 of the
longer clear span L, to the shorter clear span §,; (3) the yield strength f, of the stedl
reinforcement; {4) the average o, for the four ey values for relative stiffness ol  panel
perimeter beam compared to the slab, as described in Section 16.4.

In terms of these parameters, ACI-9.5.3.3 requires the following for “slabs with
beams spanning between the supports on all sides.”

Slabs Supported on Shallow Beams Where oy, < 0.2

The minimum slab thickness requirements are the same as Tor stabs without interior
beams.

Slabs Supperted on Medium Stiff Beams Where 0.2 < oy, < 2.0

» 66 NC/
OF |

For this case,
_ L, (0.8 + fy/‘_?,(){).()()())

Mint = 5,
T T SBlag ~02) 65

which is ACI Formula (8-12). The minimum is not to be less than 5 in.

Slabs Supported on Very Stiff Beams Where oy, > 2.0

For this case,

L {08 + fy J 208,000}
36 4 98

whicl is ACI Formula {9-13). The minimum is not to be less than 3.5 in.

Min/ = {16.5.2)

0.2 0.5 1.0 1.5 2.0 2.5 |
T 1 T T T T :
88 Flexible 54
edge beams
-‘t... Min ¢ = 5in,
sol- (withovt drop panel ) P
Min { = 4in,
L panet) :
! £ a5 :
t ;
4 ACI Formula
D ]
0 (9-13)
1 "
35 1 Suf
: : sdge beams
+—* No edge beams :
30 i 1 ] L i L
0 0z 05 1.0 1.5 2.0 2.5
Qi

Figure 165.1  ACI minimum siab thickness formulas {for Grade 40 steel}. For Grade 60, divide
Laft by 1.3; for Grade 50, divide L, /¢ by 1.03,
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16.6 Noeminal Requirements for Slab Thickness and Size of Edge Beams, Column Capital, axd Drop Panel = 637

The effect of the formulas may be observed from Fig, 16.5.1 where the vertical axis is
the ratio of the long direction clear span L, to the minimum thickness £, This approach is
similar to the span-to-depth ratio limitations used for beams in Sect.ons 14.10 and 14.11.
Figure 16.5.1 includes the full feasible range of parameters: (1) the panel proportions
Lu/S ranging from square to two-to-one rectangular, and (2} the average edge stiffness
parameter g, rnging Fom zero with no edge beams to 2.5 or so for \-'c-:n:' stiff edge
beams. The parameter f is accounted for by the footnote stating the value for minimum
L, ft must be divided by 1.1 for f, = 60,000 psi, or by 1.03 for Sy = 30,000 psi, which
means that the limiting minimum is larger for a given L, when Fy exceeds 40,000 psi.
The parameter L, is included in Fig, 16.5.1.

Edge Beams at Discontinuous Edges

For all slabs supported on beams, there must be an edge beam at discontinuous edges

. having a stiffness ratio ey not less than 0.80, or the minimum thickness required by

Egs. (16.5.1) or (16.5.2) “shall be increased by at least 10 percent in the panel with the
discontinuous edge.”

166 NOMINAL REQUIREMENTS FOR SLAB THICKNESS AND SIZE
OF EDGE BEAMS, COLUMN CAPITAL, AND DROP PANEL

Whether the ACI “direct design method” or the “equivalent frame method” is used for
determining the longitudinal distribution of bending moments, certain nominal reepuire-
ments for slab thickness and size of edge beams, column capital, and drop panel must be
(ulfillecd. These requirements are termed "mominal” bhevanse they are eade-preseribed.
1t should be realized, of course, that the code provisions are based on a combination of
experience, judgment, tests, and theoretical analyses,

Slab Thickness

As discussed in Section 16.5, ACL Formulas (9-12) and (9-13) {Eqs. (16.5. 1) and (16.5.2)].
along with ACI-Table 9.5(c) [Table 16.5.1] set minimum slub thickness lor tvo-way floor
systems. In addition, ACI-9.5.3.2and 9.5.3.3 set lower limits for the minimuan valve based
on experience and practical requirements, These lower Hmits for two-way slab systems
are sunnarized:

Flat plates and fat stabs without drop panels 3in.

Slahs on shallow interior beams having ap, < 0.2 5 in.

Slabs without interior bewms but having dropy panels din.

Slabs with stiff interior beams having ap, = 2.0 3.5 0.
Edge Beams

For slabs supported by interfor heams, the mininuun thickness requirements assine an
edge beam having a stilfness ratio o vot less than 0.80. If such an edge bear is not
provided, the minimum. thickness as required by ACI Formulas (9-12) or {9-13) [Egs.
(16.5.1) ancl (16.5.2)] must be increased by 10% in the panel having the discontinnous
edge. Forslabs not having interior sapport beams, the increased minimum thickness in the
exterior panel having the discontinuous edge is given by ACI-Table 9.5{c) [Table 16.5.1],

Column Capital

Used in flat slab construction, the column capital (Fig. 16.6.1) is an enlargement of the
top of the colunn as it meets the floor slab or drop panel. Since no beams wre used, the
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T —— e,

> EXAMPLE 16.6.1

IR D Yoe S DR A B i e 1

[-S[ab

Effective dimension
of colusnn capitat

Actal column
capital

Figure 165.1 Effective
dimension of column capital.

purpose of the capital is to gain increased perimeter around the column to transmit shear
from the floor loading and to provide increasing thickness as the perimeter decreases
near the column. Assuning & maximum 45¢ bne for distribution of the shear into the
column, ACIL-13.1.2 requires that the effective column capital for strength considerations
be within the largest circular cone, right pyramid, or tapered wedge with a 90° vertex tat
can be included within the outlines of the actual supporting element (see Fig, 16.6.1).
The diameter of the column capital is usnally about 20 to 25% of the average span length
between columns,

Drop Panel

The drop panel {Fig. 16.1.2) is often used in flat slab and flat plate construction as u
means ofincreasing the shear strength around a column or reducing the negative moment,
reinforcement over a column. It is an increased slab thickness in the region surroundiag
acolumn. A drop panel must couply with the dimensional limitations of ACL-13.9.5. The
panel must extend from the centerling of supports a minimum distance of one-sixth of
the span length measured from center-to-center in each direction, and the Jprojection
of thu: panel below the slab must be at least one-fowrth of the slab thickness outside of
the drop (ACI-13.2.5). When a aualifying drop is used, the minimum thickness diven Ly
ACI-Table 9.5(c) has been reduced by 10% from the mintmum when a drop is not used.

For determining the reinforcement requitement, ACI-13.3.7 stipulates that the
thickness of the drop below the slab be assumed no larger than one-quarter of the
distance between the edge of the drop panel and the edge of the column or colum
capital. Because of this limitation, there is little reason to use a drop panel of greater pln
dimensions or thickness than enough to satisfy using the reduced thickness for the slab
outside the drop panel. :

For the two-way slab (with beams) design example described in Section 16.3, determine

the minimum thickness requirement for deflection control; and compare it with the

preliminary thickness of 6 in.

SOLUTION  The average ratios apu for panels 1,2, 3, and 4 may be computed from the e
values shown in Fig. 16.4.4; thus

% for panel 1 = 1(5.96 + 8.27 + 3.50 + 13.83) = 7.90
o for panel 2 = }(3.50 + 8.27 + 3.50 + 1383y =729

» EXAMPLE
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16.6 Nominal Requirements for Stab Thickness and Size of Edge Bears, Column Capital, and Drop Panel <t 639

tpn for panel 3 = ﬁ(s.% +8.27 + 3.50 4 8.7} = 6.50
&fin for panel d = £(3.50 + 8.27 + 3.50 + 8.27) = 5.89

Since the oy, vatues for all four panels are well ahove 2, Fig. 16.5.1 shows that Eq.
(1{5.5.2), which is ACI Formula (9-13), applies. The minimuwm thickness for all panels,
using L, = 24 ft, S, = 18.83 ft, and f, = 40,000 psi, becomes
L.(0.8+0.2£,/40,000) _  24{12)1.0
36+9L,/8, 36 + 9(24)/18.83

If a uniform slab thickness for the entire floor area is to be used, the minfmum

for deflection control is 8.07 in., which compares well with the 61-in. preliminary
thickness. . «

min ¢ =

= 6.07 in.

EXAMPLE 16.6.2 . Review the slab thickness and other nominal requirements for the dimensions in the flat

slab design example deseribed in Section 16.3.

. SOLUTION  (a) Stiffness of edge beams. Before using Table 16.5.1 or ACI-Table 9.5(c),
the oy values for the edge beams are needed, The moment of inertia of the edge beam
section shown in Fig. 16.6.2(b) is 22,900 in." Thus the &y value for the long edge beam
is

I 22900 22,900

o = T Tooep/E - 4z o
and for the short edge beam, itis
I 22,900 22,900
a =~ = = 4,24

]

1, 150(78P/12 5270
These o values are entered on Fig, 16.6.2(a).
{b) Minimum slab thickness using Table 16.3.1 or ACI-Table 9.5(c). The long and
short clear spans for deflection control are
Ly = 25 - 4.43 = 20.57 fi; Sy =320—-443=1557TH

from which

Lo 2057

S, 1837 T
For f, = 40 ksi, a flat slab with drop panel, and a = smaller of 4.34 and 5.42, Table
16.5.1 gives

L, _ 205712}
407 40
for hoth exterfor and interior panels.

min { = =617 in.

{c) Nominal requirement for slab thickness, The minimum thickness required is,
from part (b}, 6.17 in. The 7 in. slab thickness used is more than ample; 64 in. should
probably have been used.

(d) Thickness of drop panel. Reinforcement within the drop panel must be com-
puted on the basis of the 104-in. thickness actually used or 7§ in. plus onc-fourth of the
projection of the drop beyond the column capital, whichever is smaller. In order that the
full 3-in. projection of the drop below the 73-in. slab is usable in computing reinforce-
ment, the 6 ft § in. side of the drop is revised to 7 {t so that one-fourth of the distance
between the edges of the 5-1t cohumn capital and the 7-{t drop is just ecqual to (10.5 — 7.5)
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Figure 16.6.2 Computation of oy values for the flat slab in Example 16.6.2.

> EXAMPLE 16.6,3 Review the slab thickness and other nominal requirements for'the dimensions in the flat

plate design example described in Section 16.5.
SOLUTION  (a) Minimum sluab thickness from ACI-Table 9.5(c). For Sy =50 ksi, Fora flat
plate which inkerently has er=0andL, =15~1 =14 ft, from Table 16.5.1,

min ¢ = linear interpolation between fy =40ksiand f, = 60 ksi

1 (L,, Ly

1 1 . .
=3\l5 + 36) = 5(168) (ﬁ + 3_6) =3.34in. (exterior panel)




———

fy = 50k,
Jble 16.5.4

0 ksi

exterior panel}:

—y

16.7 Direct Design Method—Limitations = 641

and

5+

36 33 2 33

(b) General. Prior to the 1995 ACI Code, there was an aption to use an ACI Formula
to obtain the minimum thickness. Since formulas, no matter how complicated, cannot
accurately give the minimum thickness to ensure there will be na deflection problem, a
table value seems appropriate and entirely within the aceuracy of engineering knowledge
regarding deflection. The 53-in. stab thickness used for all panels satisfies the ACLTable
9.5(¢) minimuem and exceeds the nominal ininimitm of 5 . for slabs withont drop pancls
aadd without interior beains.

. L/L, Ly 1 1 1
min ¢ = ~ (-———- + ---) = ~(168} (5—6- e --) =488 in. (interior panel)

Em DIRECT DESIGN METHOD—LIMITATIONS

Over the years the use of two-way floor systems has been extended from one-story or
low-rise to mecium or high-rise buildings. For the common cases of one-story or low-
rise buildings, lateral load {wind or earthquake) is of lesser concern; thus most of the
ACI Code refers only to gravity load (dead and live uniforr load). In particular, when the
dimensions of the foor system are quite regular and when the live load is not excessively
large compared to the dead load, the use of a set of prescrived coefficients to distribute
fongitudinally the total factored static moment Mo scems reasonable. As shown in Figs.
16.3.1 and 16.3.2, for each clear span in the equivalent rigid frame, the equation

Mlleft) + M right) tor La 1,%}
2 8

+ Moo 2 [Mu = [16.3.3]
is 1o he satisficd,

To use the direct design methad, in which a set of preseribed coclTicients give the
negative endd moments and the positive mement within the span of the equivadent rigid
frame, ACI-E3.6.1 fmposes the following Thnitutions:

1. There is 2 minimum of three continuous spans in exch direction.

2. Pancls must be rectangular with the ratio of longer to shorler span conler-to-
center of supports within a panel not greater tian 2.0,

3. The successive span lengths center to-center of supports in each direction do not
differ by more than one-third of the longer span.

4. Columnns are not offset more than 10% of the span in the direction of the offset.

5. The load is due to gravity only and is uniformly distributed over an entire panel,
and the service live load does not exceed aee times the service doad load.

6. The relative stiffness ratio of L‘f/ac;l to L’;‘/ﬂ!fg must He between 0.2 and 5.0,
where oy is the ratio of the flexural stiffness of the included beam to that of the
slab.

Though the design of two-way [loor systems is to a large extent empirical. the ACI
Timitations conform to the experimental results that are available [16.15-16.22[ and to
many years of experience with stabs in actual structures. The “divect design method” can
also be used when it can be demonstrated that variations from any of the six limitations
will still produce a slab system that satisfies the conditions of equilibrium and geometric
compatibility and provides strength as required by ACI-8.2 and 9.3, and that all service-
ability conditions are met, including specified limits on deflection. Van Buren [16.28] has
provided such an analysis for staggered columns in flat plates.
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» EXAMPLE 16.7.1

 16.8 DIRECT DESIGN METHOD-—LONGITUDINAL DISTRIBUTION
OF MOMENTS

Show that for the two-way slab (with beams) design example described in Section 163
the six limitations of the direct design method are satisfied.

SOLUTION  The Rrst four limitations are satisfied by inspection. For the fifth limittion.

150
service dead load wp = 6.5 (-ﬁu) = 81 psf
service live loud w;, = 138 psf
w, 138 "
—— e < @ OX
wo | 8L

For the sixth limitation, referring to Fig. 16.4.4 and teking L; and L in the long and shot
divections, respectively,

L2 625
X — T e rr——t. 56.(‘
Panel 1, 050383+ 8.2T) o0
L} 400
—l = = 84.6
a2 0.5(5.96 + 3.50)
L} 625
anel 2. =) 566
Panel g 0.5(13.83 +8.97)
LE 400
— = e = 1143
as 380 = 1
It 625
anel 3, ol R
Panel 3 o~ 85 5
3 400
apz 0.5(5.96 +3.50) 846
2
Panel 4, -'—[-1 = —6%—!—3— =75.6
orr 8.27
L 400
Fe oo ez |14
ors 350 1143
Al ratios of L¥/ary to L2 /o, lie between 0.2 and 5. <4
/e 2/ Cf

Inthe “direct design method,” moment curves in the divection of span length need not be
computed by an elastic analysis of the equivalent rigid frame subjected to various pattem
loadings; instead they are nominally defined for regular situations.

Figure 16.8.1 shows the longitudinal moment diagram for the typical interior span
of the equivalent rigid frame in a two-way floor system as prescribed by ACI-13.6.3.2,
Later in Section 16.12, the positive moment 0.35M¢ or the negative moment 0.65M is
te be distributed transversely to the slab having width Ly and to, the included beam {if
any) having clear span L,. Note that

My = b, LoL? [1633]

For a span thatis completely fixed at both ends, the negative mowment at the fived end
is twice as large a5 the positive moment at midspan, For a typical interior span satisfying -
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L2 L, /2
|
0.35M,
/
i i
- at feast
My
0,654, e 5% Figire 16.8.1 Longitudinal moment diagram for

0 interior span.
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Figure 1682 Longitudinal mement diagram for exterior span.

I
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the limitations for the direct design method, the specified negative moment of 0.653, is
a little less than twice the specified positive moment of 0.35M, which is fairly rcasonable
because the restraining effect of the columns and adjacent panels is definitely less tha
that of 2 completely fixed-ended bearn. _ :
For the exterior span, ACI-13.6.3.3 provides the longitudinal moment diagram for
each of the five categories as described in Fig. 16.8.2. On examination of these diagruns,
one sees that the negative moment at the exterior support increases from 9 to 0.65M,, .
the positive moment within the span decreases from 0.63My to 0,353y, and the negative
moment at the interior support decreases from 0.75M, to 0.65Mo, all gradually as the
restraint at the exterior suppoxt increases from the case of 4 slab simaply supported on 3
& masonry or concrete wall (unrestraiied) to that of a reinforced concrete wall built
monolithically with the slab (fully restrained). ACT Commentary-R13.6.3.3 states that :
high positive woments are purposely assigned into the span since clesign for exterior
negative moment will be governed by minimum reinforcement to control cracking,
Regarding the ACI Code suggested moment diagrams of Figs. 16.8.1 and 1652,
ACI-13.6.7 permits these moments to be modified by 10% provided the total factorod
static moment Mo for the panel is statically accommodated.

# 16.9 DIRECT DESIGN METHOD—EFFECT OF PATTERN LOADINGS
ON POSITIVE MOMENT

To understand the effect of pattern loadling on the: longitudinal moment values in multipie
panel two-way Hoor systems, it is convenient to review some aspects of the continuity
analysis of the usual colunn-beam type of rigid frames discussed eartier in Chapter 7.
Some of the Bncings, which might be visualized using knowledge of influence lines and
maximitm owment envelopes due to dead and live foad combinations, wre as follows:
(1} the higher the ratio of column stiffiress to beam stiffness, the smaller the effect of
pattern loadings, because the ends of the span are closer to the fixed condition and loss
effect is exerted on the span by loading patters on adjacent spans; {2) the lower the
ratio of dead load to five load, the lazger the effect of pattern loadings, because dead load
exists constantly on all spants and the pattern is related to live Joad on by; and (3) maximmm
negative moments at supports are less affected by pattern loadings than maximum positive
tmoments within the span.

Prior to the 1995 ACI Code, the adjustment of positive moment to account for
pattern loading had to be considered. Since 1995, the ACI Code restricts the uses of the
direut design method to cases where the service live load does not exceed fwo (insteud
of three used previously) times the service dead load, With this lower maximum ratio
for live load to dead load, the ACI Code committee concluded the number of cages
where pattern loading would have a significant effect would be gmall; thus, adjustment
for pattern loading no longer appears in the ACI Code, '

» EXAMPLE |

¥ 16.10 DIRECT DESIGN MrTHOD—PROCEDURE FOR COMPUTATION
OF LONGITUDINAL MOMENTS

The background explanation for the distribution of the total static moment My in the
longitudinal direction, and the disc ission of pattern loading effect, have been diseussed
In the two preceding sections. Using this information, the procedure for computing the
longitudinal moments by the “direct design method” may be summarized:
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1. Check limitations 1 through 5 for the “dizct design method” listed in Section

16.7. If they comply, and the slab is supporied on beams, follow Steps 2 through
6 given below. For slabs not supported on beams, proceed to step 6.

2, Compute the slab moment of inertia I,

‘;3
L =Yl (;_O.)

3. Compute: the longitudinal hewn (iFany) moment of inertia 7, (ACL-13.2.4),
4. Compute the ratio ey of the llexural stiffness of beam seetion to flexural stiffiiess

of w width of stah hovnded Taterally by conterlines of acjucent panels G anv) on
cach side of the bewn
- Echff)

T B,

5. Check that the ratio L{ /s, to L3 /e e Jies between 0.2 and 5.0 for the cases where

the slab is supported by beams.

6. Compute the total static moment My = 10, Lo L3/8 as stated by Eq. {16.3.3).
P n Y kg

Note that L, is not to be taken [ess than 0.65L,. For flat slabs, Eq. (16.3.4) should
preferably be used for computing Mo.

7. Obtain the three critical ordinates on the longitudinal moment diagrams for the

exterior and interior spans using Figs. 16.8.1 and 16.8.2.

For the two-way slab (with beams) design example described in Section 16.3, determine
the Jongitudinal moments in frames A, B, C, and D, as shown in Figs. 16.3.5 and 18.10.1.

SOLUTION  {a) Check the six [imitations for the direct dlesign method. These limitations
have been checked in Example 16.7.1.
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Figure 16,101 Longitudinal moments for two-way slab (with beams) design exanmple.
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P EXAMPLE 16.10.2

(b) Totil factored static moment M. The total factored static moments My for the |
equivalent Agid frames 4, 8, C, und 12 have been computed in Example 16.3.1; they are
My (lrame A) = 448 ft-kips
My (Trame B) = 9244 [t-kips
My (frune C) = 350 ft-kips
My {Trame 13) = 175 11 t-kips
(&} Longitucinal moments in the frunes. The longitudinal moments i frames AR,
C, and D we computed using Case 2 of Fig. 16.8.2 for the exterior span and Fig, 16.8.1 for

the interior span., The computations are us shown below, and the results are sumimarized
in Fig. 16.10.1

For Frame A, My = 488 [t-kips
Mig ut exterior support = 0.16(448) = 72 fr-kips
M 1 exterior span = (.57(448) = 255 fe-kips

Moy at first intevior support = 0.70(448) = 313 [t-kips
Mg at typical interior support = 0.65{448) = 291 fe-kips
Mpos In typical interior span = 0.35(448) = 157 ft-kips

Fer Frume B, My = 224 ft-kips
My at exterior support = 0.16(224) = 36 ft-kips
My in exterior span = (L,57(224) = 128 fe-kips

Mg at first interior support = 0.70(224) = 157 ft-kips
M ueg at typical interior support = 0.65(294) = 146 fe-kips
My in typical interjor span = 0.35(224) = 78 ft-kips

For Frame C, My = 350 fr-kips
M.y at exterior support = 0.16(350) = 56 fi-kips
Mo ) exterior spian = (LAT(350) = 200 ft-kips

Mg at fivst interior support = 0.70{350) = 245 Fr-kips
My at typical intervior support = 0.6503150) = 228 [1-kips
M5 In typical interior span = (L35(350) = 123 fi-kips

For Frame D, My = 175 ft-kips
Myeg at exterior support = 0.16(175) = 28 fe-kips
M in exterior span = 0.57(175) = IOQ,,&—kips

My at first interior support = 0.70{175) = 123 ft-kips
Mg at typical interior support = 0.65(175) = 114 ft-kips
Mpos in typical interior span = 0.35(175) = §1 ft-kips «

For the flat slab design example deseribed in Section 16.3, compﬁte the longitudinal
moments in frames 4, B, C, and D as shown in Figs. 16.3.6 and 16.10.2,

SOLUTION  (2) Check the five limitations {the sixth limitation does not apply here) for the
direct design method. These five Fimitations are all satisfed.
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Figure 16.10.2 Longitudinal moments for flat slab design example.

(b) Total factored static moment My, Referring to the equivalent rigid frames A, B,
C,and D in Fig. 16.10.2, the total factored static moment may be taken from the results
of Exaraple 16.3.2; thus

My for A = 396 ft-kips
M, for B = §(396) = 198 fr-kips
My for C = 293 [t-kips
Mofor D= %(293) = 147 ft—kips

TABLE16.10.1 Longitudinal Moments {ft-kips) for the Flat Siah Design Example

Frame A B L# D
My 396 198 293 147
Mo at exterior support, 0.30My 119 59 88 44
M s v exterior span, 0.50My, 198 99 147 T4
M ey 0t first interior support, 0.70My 277 139 205 103
My it lyp]’f:.n_[ interior support, 0.65My 257 129 190 a5
My i lypiczti interior span, 0.35Mg 138 [$18] 96 St

(¢} Longitudinal moments in the frames, The longitudinal moments in frames 4, B,
C, and D are computed using Case 4 of Fig. 16.8.2 for the exterior span and Fig, 16.8.1
for the interior span. The compuiations are shown in Table 16.20.1 and the results are
summarized in Fig. 16.10.2. -{
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» EXAMPLE 16.10.3 For the lat plate design exanple described in Section 16.3, compute the longituding » 16.11 TOF

moments in frames A, B, C, and D us shown in Figs, 16.3.7 and 16.10.3,

SOLUTIGN () Check the five limitations (the sixth limitation does not apply here) for the
direct design miethod. These limitations are all satisfiec.
(b) Total factored static moment My trom the results of Example 16.3.3,
Mo for A=58.291 t-kips
My for B = $(58.9) = 29.1 ft-kips
My for € = 46.3 fi-kips
My for D = 23.] fi-kips
{c} Longitudinal moments in the frames. The longitudinal moments in frames A, B,
C, and D are computed using Case 3 of Fig. 16.8.2 for the exterior span and Fig, 165.]

for the interior span, The computations ave as shown in “Table 16.10.2 and the results are
summarized in Fig, 16.10.3.

B
1

‘%mmzm—;ijzmm?/mfv E Q =X o g (
% T SO S
‘l‘" Equivalent rigid frame 4 13 E £ _‘£
ST e
@ ) 2 % 2 -.! L.. 12° s
(=] T 4 b b
REGRREeRies £ = 3
Equivalent rigid frame 8 % E
o =< o
-1 e (g E T
16" = 757
Se18=7 Extarior edge of floor
Exterior edge of floor No edge bears used
Typical column 10 X 127
—18.1 —40.7 -37.8 -37.8 ~12.0 324 -30.7 304
S | 208 ] [ *2ar | <62 I
Moments in 4 Momenzsin
-7.6 -20.4 ~-18.9 -18.9 -60 -162 -150 -150
[ +161 [ +02 ] | w1287 | <ai I
Morments in 8 Moments in O

Figure 16.10.3 Longitudinal moments for flat plate design example,
TABLE 16.10.2 Longitudinal Moment (R-kips) for the Flat Plate Design Example

Frame A "B C D
My 582 | a9) 46,3 3.1
Moy at exterior support, 0.26M, 15.1 7.6 12.0 6.0
Mpes in exterior span, 0.52)M, 303 15.1 241 12.0
Mucy 4t first interior support, 0.70:, 0T | W4 | 324 | 162
My at typical interior support, 0850, 37.8 15.9 30.1 150
My, i typical tnterior span, 0,354, 20.4 10.2 162 8.1
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16.11 Torsion Stiffress of the Transverse Elemints < G49

Up to this point, the stiffness of the equivalent frame has been considered with regaed
to the members in the plane of the frame only. The transverse members, however, will
also contribute to the stiffuess of the frame by resisting the in-plane bending through
torsion. In the ACI Code, this contribution is considered by the torsional amstant € of
the transverse beam spanning from column to column. Even if there is 1o such beam (as
defined by projection above or below the slab) actually visible, for the present use one
still should imagine that there is a beam made of a portion of the slab having awidth equal
to that of the column, bracket, or capital in the direction of the span for which moments
are being determined (ACI-13.7.5.1a). When there is actually a transverse beam web
above or below the slab, the cross-section of the transverse beam should include the
portion of slab within the width of column, bracket, or capital described above plus the
projection of beam wel above or below the slub {ACI-13.7.5.1b). As a third possibility,

the transverse beam may include that portion of slab on each side of the beam web equal

to its projection above or below the slab, whichever is greater, but not greater than four
times the slab thickness (ACI-13.7.5. Lc). The largest of the three definitions as shown in

Tig. 168.11.1 may be used.

{6, + larger of by or A,
but no larger than 5, + 4¢)

&

T - R

For torsional member For torsional l b, l For flexural and
{no actual beam) member torsional member
[ACI—13.7.5.1a} [ACI-13.7.5.1b} {ACI-13.2.4} or
{ACI-13.7,5,1¢}
{a} (b {e}

Figure 16,111 Dclinition of cross-sections for transverse beams in torsion. {Projection of slab
beyond beam in Case {¢) is allowed on each side for interior beam.]

The torsional constant C of the transverse beam equals

xy [y
C=Y (1 - 0.63;;) (*5—) (16.11.1)

which is given in ACI-13.6.4.2, where

x = shorter dimension of 4 component rectangle
y = longer dimension of a component rectangle
and the component rectangle should be taken in such a way that the largest value of C

is obtained. Equation (16.11.1} is identical to Eq. (19.3.5), for which there is acditional
discussion in Chapter 19,

For the two-way slab {with beams} design example, compute the torsional constant C for
the edge and interior beams in the short and long directions,

|
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L
T T

47
ltzllf

{a) Short direction

57"

L 355" grim385" 67"

—

17‘5".

i

(b} Longdirection
Figure 16.11.2  Effective cross-sections of transve rse heanis resisting torsion, in two-
(with beans) design example.
SOLUTION  Each cross-section shown in Fig. 16.11.2 may be divided imto
rectangles in two different ways and the lger value of C is to be used.
For that short divection,

e N § serp .
- _._}r : ] [ ] {

-t
=T [

g

waly slich

compenent

of edge Y L[ _ 0.63(65)7 20.5(6.57 . [1 0.63(12) 7 17.5(12)3
beam / 20.5 3 17.5 3 )
= 2325 4 5725 = 8050 in.4 ¢
or E
c.(cdg&r) =) 0.636.5)7 1750657 o[ 06302)7 24(12p ﬁ
“\beam /| 175 3 34 3 :
= 1280 + 9470 = 10,700 i1 T
c (i,ﬂeﬁ(n.) =[1 - 0BERNTE | 1 06312)7 175007 q
\ beam J T 47 3 7.5 3 ] j
= 3925 -+ 5725 = 9650 in.
or .
c( “l‘fi::') = 2(1230) + 9470 = 11,930 in.?
For the Iong direction, i
¢ ( mlgg-) _ [ . 063(65)7 35.5(6.5) L) - 08U ey :
\beam )~ 35.5 3 BTG A 3
= 2900 + 11,600 = 14,500 in.*
or .
c ( edg&._) = |1 063(6.5)] 21.5(6.5)3 + [ - 0-63(14)7 28004p°
heam 215 3 28 3

= 1600 + 17,500 = 19,106 in,*
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c ( interior L 0:68(6.5) 57(6.5)° T 21.5(143
heam 57 3 21.3 3
= 4800 + 11,600 = 16,400 in.4

or

¢ (ll;at:::r? r) =2(1600) + 17,500 = 20,700 in.* "

-

For the flat slab design example, compute the torsional constant ¢ for the edge beam

and the interior beam in the short and lomg directions,

SOLUTION  For the short or long edge beam [Fig. 16.11.3(a)], the torsional constant C is

computed on the basis of the cross-section shown in Fig, 16.11.3(x;.

35+ 165=515"

51.5" ,

|
| ‘ 1 s

18.5” 16.5"

14" l 14" l
35" = distance from outer edge of exterior column to inner

edge of square capital {i.e. 2’-3" + haif the 18" column}
{a} Short or long edge beam

g | 8.5" = weighted siab thickness

12 {4.43') =53.2"

-
{b} Short or long interior beam

Figure 16.11.3 Cross-sections of torsional transverse beams in flat slab design example.

[, 06375)] (75PELs) [,
C"[l‘ 51.5] 3 +[1

= 6575 + 7025 = 13,600 n.*

0.63(14)] (14Y%(16.5)
165 3

or
375
3

0.63(14)7 (14 (24)
C = [l - 57 :l 3 -+ I:I -

= 13,800 + 4610 = 18,500 in.*

0.6‘3(7.5}] {7.3
37.5

Use

For the short or long interior beam [Fig. 16.11.3(b}], a weighted slab thickness of
8.5 in. is used, on the ‘usamptmn that one-third of the span has a 103-in. thickness and

the remainder has a 7i-in, thickness. (Actually, the ratio is not c.\dctly 50 because the

drop width has been revised from 6 ft 8 in. to 7 ft.)

By [ 0.63(8.5)] [(8.5)3(12)(4,43)
C= (1"063 ;) 3 “[1 12(4.43) )

} = 9800 in*
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P EXAMPLE 16.11.3 For the fat plate design example, compute the torsional constant € for the short and
long beams, .

SOLUTION  Since no actual edge beams are used, the torsional member is, according o
Fig. 16.11.4, equal to slab thickness ¢ by the column width ¢,

B3(5.8)7 (5.5)3(12
C for short bewng = [ 1 - D.63(5.5)1 (5.5°(12) =474 in.*
12 3
63(5.5)7 (5.3)%(10
C for fong beams = | ] — 0.63(5.5)1 (5.5°(10) =362 in1t
10 3
'—““—EEJI“*- - - ] 55"
i i 10"
t L__.,
!
| Imaginary beam Ltong beam

v
- e
o N

et
_é,.__

e F== T =3 Short beam
Figure 16.11.4  Crossscelions of torsional transverse benrs i fhat plate dlesign example, <
16.12 TRANSVERSE DISTRIBUTION OF LONGITUDINAL MOMENT 2

The longitudinal moment values, whether those of the “direct design method” shown
in Figs. 16.8.1 and 16.8.2 or thase obtained by structural analysis using the “equivalent
frame method” { Chapter 1), are for the entire width (sum of the twe half panelwidths in
the brnsverse direction, for an interior columm line} of the equivalent vigid frame. Bah
of these monments is to be divided, on the busis of studies by Gambke, Sozoen, wnd Siess i
[16.124, between the cuhmmstripunclthetwoImlf' widdle strips as defined in Fig, 16.121. 3K
Ifthe two adjacent transverse spans are each equal to Le, the width of the column stripis
then equal to one-half of Lz, orong-half of the longitudinal span Ly, whichever is smaller
(ACI-13.2.1). This seems reasonable, since when the longitudinal span is shorter than
the transverse span, a larger portion of the moment across the width of the equivalent
frame might be expected to concentrate near the column centerline.

The transverse distribution of the longitudinal moment to column and middie strips
s 4 function of three parametess, using Ly and Ly for the longitudinal and transverse
spans, respectively: (1) the aspect ratio La/L; (2} the ratio ey = Eg L /(E. L) of the .
longitudinal beam stiffness to slab stifness; and (3) the ratio §, = EqC/RE L) ofthe R
torsional rigidity of edge beam section to the flexural rigidity of a width of slab equal
to the span length of the edge beam. According to ACI-13.64, the colwmnn strip is to
take the percentage of the longitudinal moment as shown in Table 16.12.1. As may be
seen from Table 16,12.1, only the first two parameters affect the transverse distribution
of the negative moments at the first and typical interior supports as well as the positive
moments in exterior and interior spans, but all three parameters are involved in the
transverse distribution of the negative moment at the exterjor support,
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R Centerline of panel
I ~TTYT
{1 Width of equivalent
, Half middle strip |t frame
|
% T [ I T 5
= ' Column strip -S
0
% {-E-I—:- —————— — = = = e - — ] 2
o e e e e T ——— 8
i S
3 5
-
.-g — e ———— — e e e e e =
a
X i Half middle strip
N ; . LY _
1 N Centerline of panel

Figure 16.121 Definition of column and middle strips

Regarding the distributing percentages shown in Table 16.12.1, the foliowing obser-
vations may be made:

1. In general, the column strip takes more than 50% of the longitudinal mement.

2. The column strip takes 2 larger share of the negative longitudinal moment than
the positive longitudinal moment.

3. When no longitudinal beams ave present, the column strip takes the same share
ol the longitudinal moment, irrespective of the aspect ratio. The reader may note,
however, that the column strip width is a fraction of Ly or Ly (0.25Ly or 0.25L¢
on each side of column line}, whichever is smaller.

4. In the presence of longitudinal beams, the larger the aspect ratio, the smaller
the distribution to the column strip. This seems consistent because the same
reduction in the portion of moment going into the slab is achieved hy restricting
the column strip width to a fraction of Ly when La/Ly is greater than one.

5. The column strip takes a smaller share of the exterior moment as the torsional
rigidity of the edge beam section increases.

When the exterior support consists of a column or wall extending for a distance equal
to or greater than three-fourths of the transverse width, the exterior negative moment is
to be uniformly distributed over the transverse wiclth {ACI-13.6.4.3).

"The procedure for distributing the longitudinal moment across a transverse width to
the column and middle strips may be summarized as follows:

1. Divide the total transverse width applicable to the longitudinal moment into a
column strip width and two half middle strip widths, one adjacent to each side of
the column strip. For an exterior column line, the column strip width is iLy,0r
iLg, whichever is smaller; for an interior column line, the colummn strip width is
}:(iLl or %Lg, whichever is smaller, of the panels on both sides).

Determine the ratio fr = EbC/(2Ee L) of edge beam torsional rigidity to slab
fiexural rigidity. (Note: The 2 arises from approximating the shear modulus of
clasticity in the numerator as Eg, /29

Determine the ratio oy = EgpIn/(Ees L) of longitudinal beam Aexural stiffness
to slab flexural stiffness.

W

bt
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» EXAMPLE 16,12.1

4. Divide the longitudinal moment at each eritical section into two parts according
to the percentage shown in Table 16.12.1: one part to the column strip width; und
the remainder to the hall middie strip for an exterior column line, or to the half
middle stvips on each side of an lnterior columm line.

TABLE16.121 Percentage of Longitudinal Moment in Column Strip (ACI-13.6.4}

Aspect Rutio La/ L, 0.3 14

Negative moment at ap Lafly =10 B=0 140 100
extevior support B =23 i 75
enlafln =10 B =0 1G4 100

B =25 90 73

Positive moment e la/ly =0 G0 GO
&fl.{f;/Ll = 1.0 940 75

Negative moment gt o lefly =0 ¥E) 75
interior support eiile/L) = 1.0 90 75

5. If there is an exterior wall instead of an exterior column line, the strip ordinarily
calledt the exterior colwmm strip will not deflect and therefare no moments aet. ,
In this case there can be no longitudinal distribution of moments; thus there
is no computed moment to distribute laterally to the half middle strip adjacent
to the wall. This half middle strip should be combined with the next adljacent
half middle strip, which itself receives a lateral distribution in the frame of the
first interior column line. The total widdle strip in this sitwation is designed for
twice the moment in the half widdie strip from the first interior column lie
(ACI-13.6.6.3).

Distribution of Moment in Column Strip to Beam and Slab

When 2 longitudinal bears exists in the column strip along the colunm centerline, the
colunun strip moment as determined by the percentages in Table 16.12.1 {ACI-13.6.4) A
should be divided between the beam and the shab. ACI-13.6.5 states that §5% of this -8
moment be taken by the beam if ar\ La/ Ly is equal to or greater than 1.0, and for valoes
of ari Lo/ Ly between LO and 0, the proportion of moment to be rosisted by the beam |
is to be obtuined by linear interpolation between 85 and 0%. In additionl, any beam
must be designed to carry its own weight (projection above and below the slab), and any
concentrated or linear load applied directly on it (ACI-13.6.5.3).

For the two-way slab (with beams} design example described in Section 16.3, distribute
the longitudinal moments computed for Frames A, 8, C, and D (see Fig, 16.10.1} into

three parts—namely, for the longitudinal beams, for the coluymn strip sluab, and for the
micdle strip slab.

SOLUTION The values for the totul longitudinal moments in frames A, B, C, and D atthe
five critical sections are taken from Example 16.10.1 and shown again in Table 16.12.4,
The results of transverse distribution of these moments are also shown in this table.

(a) Negative moment at face of exterior support. For Frame A, Ly/L| = 0.80; o =
827 (Fig. 16.4.4), a1, Ln/ Ly = 6.61;C = 10,700 in.* (Example 16,11.1); I, = 240(6.5)%/
12=3490 in%; and g = C/21,) = 10,700/[2(5490)] = 0.98, Table 16.12.2 shows the
linear interpolation for obtainin g the columa strip percentage from the prescribed limits
of Table 16.12.1. The total moment of 72 (t-kips is divided into three parts, 92.6% to
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column strip (of which 85% goes to the beam and 15% to the slab since aplef/ly =
6.61 = 1.0) and 7.4% to the middie strip slab. The results are shown in Table 16.12.4.

TForFrame B, Lo/ Ly = 0.80; ar; = 13.83(Fig. 16.4.4); o la/ln = 1114 =098,

‘;‘he samne a3 for frame A, and column strip moment percentage = 92.6%, the same as for
rame A.

For Frame C, Lp/Ly= 125 = 3.50 (Fig. 16.4.4); o Le/Li=4.38,C =
19,100 in.® (Example 16.11.1); I, = 300(6.5)°/12 = 6870 in.%; and B=C/2L)=
19,100/[2(6870)] = 1.39, Tuble 16.12.3 shows the linear interpolation for obtaining the
column strip percentage from the proseribed limits of Table 16.12.1. The jotal moment of
56 ft-kips is divided into three parts, 81.9% to column strip (of which 85%gocs to the beam
and 15% to the slab since ap e/l = 4.38 = 1.0y und 18.1% to the middle steip slab.

For Frame D, La/Lq = 1.25; 07 = 5.96 (Fig. 16.4.4), ap1 Lo/L) = 7.45; = 1.39,
:hc satge as for frame C; and colwmn stripp moment percentage = 81.9%, the same as for

rame C,

TABLE 16122 Linear Interpolation for Column Strip Percentage of
Exterior Negative Moment—Frame 4

Lo/l 0.5 0.8 10
B =0 LO0% 100% L00%

anle/li =661 B =09  96.1%  926%  90.2%
B 2250 90% 81% 75%

TABLE16.123 Linear Interpolation for Column Strip Percentage of
Exterior Negative Moment—~Frame C

el 1.0 1.25 2.0
B =0 100% 100% 100%

apla/bly =435 B =139  86I%  819%  69.4%
B =250 % 67.5%  45%

(b) Negative moments at exterior face of first intesior support and at face of typical
interior support. For Frame A, La/Li = 0.80 and «ry La/Ly = 6.61 > 1.0. Using the
presciibed values in Table 16.12.1, the proportion of moment going to the column strip
is determined to be 81% by linear interpolation.

LafTy 0.5 0.8 10
qn Lg/Ll = G.6] 90% 81% T3%

For Frame B, Le/L) = 0.80 and apy Lg/ L1 = 11.1. The proportion of moment is
aguin 81% lor the cohnnn strip, the sume as for FPrame A.

For Frame C, La/Ly == 1.25 and &y Lo/ Ly = 4.38. Using the prescribed values in
Table 16.12.1, the proportion of moment going to the column strip is determined to be
67.5% by lincar interpolation:

" Lafla 1.0 1.25 2.0
apilafly =438 TE% 67.5% 45%

For Frame D, Ly/L; = 1.25 and ep1 La/ Ly = 7.47. The proportion of moment is
again 67.5% [or the column strip, the same as for Frame C.

{c) Positive moments in exterior and interior spans. Since the prescribed limits for
an Le/Ly 2 1.0 are the same for positive moment and for negative moment at interior
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TABLE1612.4 falso see Fig. 16.10.1) Transverse Distribution of Longitudinal Moments {ft-

Design Example

kips} in Two-Way Stab [with Beams)

Frame A

Total Width = 20 1%, Column Strip Wielih = 10 ft, Micklle Strip Widlth = 10t

Extorior Span Interior Span
LExterior Interior
Negative Positive Negative Negative Positive
Total moment -72 +255 —-313 —291 +157
Maoment in beam ~37 +176 —3216 —200 4108
Moment in column strip slab -10 +31 -38 -36 +19
Mement in middle strip slab -3 +49 —~6{ —55 +3
Frame 8
Total Width = 10 &, Caluwn Stip Width = 5 f, Half Middle Strip Width =5 ft
Exterior Span Interior Span
Exterior interior
Negative Positive Negative Negative Positive
Total moiment -36 +128 — 137 — 46 475
Moment in hbeam —328 +88 —108 —~ 10 +34
Moment in columm strip slab -3 +16 —19 -7 +
Moment in middie serip slab -3 +25 -~30 ~28 +15

Total Width = 25 1, Colunm Streip Width = 1011,

e €

Micldle Strip Widl = 1511

Exterior Span

Enterior Span

Exterfor Interior

Negative Positive Negative Negative Positive
Total moment 56 +200 ~245 ~228 +121
Moment in bewun ~39 +115 - 140 -131 +71
Moment in column strip slab -7 +20 =25 —-23 +12
Moment in middle strip slab -10 +63 —80 —74 40

Frame D

Total Width = [2.5 &, Column Strip Width = 3 ft, Half Middle StipWidth=751¢

Exterior Span

nierior Span

Exterior [nterior

Negative Positive Negative Negative Posilive
Total moment -28 +100 —123 —i14 +G1
Moment in beam =20 +57 =71 -85 +33
Moment in colwnn strip slab -3 +10 -2 -12 +6
Muoseot in injddle strip slaly -5 +33 —40) -7 420

> EXAMPLE 16.]

> EXAMI




1 {with Bes

> EXAMPLE 16.12.2

rior Span

Positive

+123;
+T
+12,
+40

EXAMPLE 16.12.3

.

16.12 Transverse Distribution of Longitudinal Moment < 657

support, the percentages of column strip moment for positive moments in exterior and
interior spans are identical to those for interior negative noments (see Table 16.12.1) as
determined in part (b) of this example. «

Divide the five critical moments in each of the equivalent rigid frames A, B, €, and D
in the Aat slab design example, as shown in Fig, 16.10.2, into two parts: eme Tor the ball
colonn strip (for fraes B and £) or the Adl colimn stefp (Ffor franes A and ), and the
other lor the hall middle strip {for Drames B and ) or the fwo hall middle strips on cach
side of the colimn line (for Fames A and €,

SOLUTION - The percentages of the longitudinal moments going into the column strip
width are shown in lines 10 to 12 of Table 16.12.5. Note that the column strip width
shown in line 2 is one-half of the shorter panel dimension for both frames A and €, and
one-fourth of this value for frames B and D. Note also that the sum of the values on line

"2 and 3 should be equal to that on line 1, for each respective frame.

TABLE 16,125 Transverse Distribution of Longitudinal Moment for Flat $lab Design Example

Line
Number Equivalent Rigid Frane - A B c D
1 Total transverse widdh (in.) 240 120 300 150
2 Colamn strip width (in.} (Fig. 16.12.1) 120 60 120 60
3 Hulf middle strip width {in.} 2@60 60 2@90 80
4 C i) lrom Exunple 16102 165500 18,500 18,500 15.500
5 L (int)in B, 8440 8440 HO60C 10,600
6 B = EaC/REL L) Lo 1.10 087 .87
7 oy from Example 16,6.2 0 542 0 34
& Ll 1 0.50 0.80 1.25 1.25
9 ap L/ Ly 0 434 0 3.43
10 Exterior negative moment, percent to
to colwmn strip (Table 16.12.1) 59.0% 91.6% 91.3% 85.7%
11 Positive moment, percent to column
strip (Table 16.12.1) 60.0% 81.0% 60.0%  67.5%
12 Enterior negative moment, percent to
cohuna strip (Table 16.12.1) 0% 81.0%  T5.0%  67.5%

The moment of inertia of the slab equal in width to the transverse span of the edge
beam is

240(7.5)° "
LinglorAand B= m]%j_l_ = 8440 in,!
and \
0(7.5) .
Ling forCand D = §-(-)--§2~———2- = 10,600 in."

"These values are shownin line 5 of Table 16.12.5.

The percentages shown in [ines 10 to 12 are obtained from Table 16.12.1, by interpo-
lation (as iHustrated in Tables 16.12.2 and 16.12.3) if necessary. Having these percentages,
the separation of each of the Tongitudinal moment values shown in Fig. 16.10.2 into bwo
parts is & simple matter and thus is not shown further, <

Dividle the five eritical moments in each of the equivalent rigid frames A, B, C, and D in
the fat plate design example, as shown in Fig. 16.10.3, into two parts: one for the half
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columnn strip (for frames B and D) or the full column strip {for frames A and C), and the
other for the half middle strip (for frames B and D) or the two half middle strips on each
side of the column line (for frmmes A and ©).

SOLUTION  The percentages of the longitudinal moments going into the column sty
width are shown in lines 10 to 12 of Table 16.12.6. Explanations are identical to those fu
the preceding example.

TABLE16.128 Transverse Distribution of Longitudinal Mement for Flat Plate Design Example

Line
Number Equivalent Rigid Frame A B ¢ n
1 Total transverse width (in) Ld4 T2 150 e
2 Colunu strip wicth (in.) T2 36 72 36
3 Half middie strip width (in.) 2@36 36 2@ 54 b1 E: §
4 Clin?) from Example 16.10.3 474 474 362 3
3 L(in%) in 8, © 2000 2600 2300 2500
6 B = EaCHRELL) (119 0.119 0073 04073
7 ) 0 0 0 &
3 Laf L 080 (.80 1,25 1%
8 th; L-g,/L] { 0 - 0 [
10 Exterior negative moment, percent to
column serip 98.8%  O88%  YON%  v9a%
11 Positive moment, pereent ks colume stri p 60% 50% 60% GO%:
1z Interior negative moment, percent to
column strip Ta% T5% 3% 5%
<

¥ 16.13 DESIGN OF SLAB THICKNESS AND REINFORCEMENT
Stab Thickness

Ordinarity the minimunt thickuess specified in ACI-9.5.3 controls the thickuess for
design. OF course, veinforcement for bending moment must be provided, but the
reinforcement ratio p recuired is usually well below 0.5, thus, it does not dictate skib
thickness. For flat slabs, flexwal strength must be provided both within the drep pant
and outside ity limits. In evaluating the strength within a drop panel, the dron width
should be used as the transverse width of the compression area, because the drop i E ]
usaally narrower than the width of the column strip. Also, the effective depth to be used
should not be taken groater than what would he furnished by adrop thickness below the 4
stab equal to one-lourth the distance from the edge of drop to the'edge of column capital.

The shear requirement for twa-way slabs (with beams) may be mvestigated by ob.
serving strips 1-1 and 2-2 in Fig. 16.13.1. Beams with er1 Lo/ Ly values lurger than 1.0
are assumed to camy the loads acting on the tributary loor areas bounded by 45° lines
drawn from the corners of the panel and the centerling of the panel pavallel to the lony
side yACI-13.6.8.1). If ehis is the case, the loads on the trapezoidal areas E and F ol
Fig. 16.13.1 go to the long beams, and those on the triangular areas G and H go to the
short beams. The shear per unit width of slab along the beam is highest at the ends of -
slab strips 1-1 and 2-2, which, consiclering the increased shear at the exterior face of the
first interior support, is approxi mately equal to

V, = 1.15 (fi:-;—q) (16.13.1)
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-

Figure 16.131  Load transfer from Soor
area to beams,

eap Lo/l is equal to zero, there is, of course, no load on the beams (because there are
no henms), When the value ul'czf; La/ Ly is hetween O ane 1.0, the percentage of the (loor
load going to the beams should be obtained by linear interpolation. b such « case, the
shear expressed by Eq. (16.13.1) would be reduced, but the shear around the column due
to the portion of the floor loact going directly to the eohunns by two-way action should
be investigated as for flat plate (loors.

The shear strength requirement for flat slab and flat plate systems fwithout beans)
is treated separately in Sections 16.13, 16.16, and 16.18.

Reinforcement

When the nominal requirements for slab thickness as discussed in Section 16.6 are satis-
fied, no compression reinforcement will likely be required. The tension steel area requived
within the strip being considered can then be obtained by the following steps:

factored moment M, in the strip

{$ = 0.99-assumed, but reasonable for siabs)
I
085f" "7 ba¥’

i } 2R,
o= — (I-— |- MHJ). Ay = phel
m fy

Insteud of using the equation for g in Step 2, the curves in Fig. 3.8.1 may be used.
Note also that the values of b and ¢ to be used in Step 2 for negative moment in a column
strip with drop are the drop wicdth for b, and for J the smalier of the actual effoctive
depth through the drop and that provided by a drop thickness below the slab at no more
than one-lourth the distance hetween the edges of the column capital and the drop, For
positive moment computation, the full colomn strip width should be used fordi, i the
effective depth in tire stab for d. After obtaining the steelarea A, required within the strip,
anumber of bars may be chosen so that they provide either the area required for strongth
or the area required for shrinkage and temperature reinforcement, which is 0.00180¢ for
Grade 60 steel, but somewhat more for Jower grades (see ACI-7.12). The spacing of
reinforeing bars must not exceed 2 thnes the slab thickness (ACI-13.3.2), except in stabs
of cellular or ribbed construction where the requirement for shrivkage and tewperature
reinforcement governs (i.e., 5 times the slab thickness but not greater than 18 in.).

Reinforcement Details in Slabs Without Beams

1. required M, =

2. m=

ACI-13.3.8, in particular ACI-Fig. 13.3.8, provides detailed dimensions for minimum
extensions required for each portion of the total number of bars in the column and
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middle strips. Since the forces acting in the bars were empirically determined, thereisno
practical means to evaluate the distances required to develop the reinforcement. Thys,
past practice and engineering fudgment were used in preparing ACI-Fig, 13.3.8. in 1959,
that figure omitted details for hent bars begause they are seldom used., although theiruse
is still permitted by ACE-13.3.8.3 when the depth-span ratio allows bends at 45° ar less.

For unbraced frames, reinforcement lengths mast be determined by analysis but not
be less than those prescribed in ACI-Fig, 13.3.8. Also, ACI-13.3.8.5 requires the use of
“integrity steel,” which consists of a minimum of two of the column strip bottom bars
passing continvously (or spliced with Class A splices or anchored within support) through
the colunn core in each direction. The purpose of this integrity steel is to provide some
residual strength following a single punching shear faihure. Since 2002, the ACI Code
also allows the use of mechanical and welded splices as alternative methods of splicing
the reinforcement.

Corner Reinforcement for Two-Way Slab (With Beams) > EXAMPLE |

Itiswell known from plate bending theory thatw transversely loaded slab stmply supported
along four adges will tend o develop corer reactions as shown in IP ig. 16.13.2, lor which
reinforcement must he provided. Thus in-slabs supported on beams having a value of
o greater than 1.0, special reinforcement {Fig. 16.13.3) shall be provided at exterior
corners n both the bottom and top of the slab. This reinforeement ( ACI-13.3.6) lstohe
provided for a distance in cach direction from the corner equal to one-fifth the longer
span. The reinforcement in both the top and bottom of the slab must be sufficient to
resist a moment equal to the maximum positive moment per foot of width in the s,
and it may be placed in a single band paralle] to the diagonal in the top of the slab and
perpendicular to the diagonal in the bottom of the slab, or in two bands parallel to the
sides of the slab.

) I 1
" N
S
53
/ Edge shear distribution
4
R Edge shear distribution R

¢

Figure 16.13.2 Edge reactions for simply supported tvo-way slab,

Reinforcement in top of slab

» EXAM!

Plan view Section 4-A
Figure 16.133 Corner reinforcement in bwo-way slab.
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Crack Control

In addition to deflection control, crack control is the other major serviceability require-
ment usually considered in the design of flexural members. ACI-10.6 gives criteria for
beams and one-way slabs to ensure distribution of flexural reinforcement to minimize
crack width under service loads. No ACI Code provisions are given for two-way floor (or
roof) systems; however, ACI Commitiee 224, Cracking, has suggested a formula to predict
the possible crack width in two-way acting slabs, flat slabs, and flat plates. The recommen-
dations are based on the work of Nawy et al. [16.72-16.75]. When the predicted crack
wictth is considered excessive (there are no ACI Code limits for slabs), the distribution
(size and spacing) of flexural reinforcement may be adjusted [16.75] to decrease predicted
erack width, Ordinarily, crack width is not a problem on bve-way acting skabs, but when
steel with f, equal to 60,000 psi or higher is used, crack control should be consicered.

+ Investigate if the preliminary slab thickness of 63 in. in the two-way slab (with beams)
design example described in Section 16.3 is sufficient for resisting flexure and shea.

SOLUTION Fo: ench cfthe equivalent frames A, E, C, and D, the largest bending moment
in the slab occurs at the exterior face of the first interior support in the middie strip slab.
From Table 16,12.4, this moment is observed to be 60/10, 30/5, 80/15, or 40/7.5 ft-kips
per ft of width in frames A, B, C, and D, respectively. Taking the effective depth to the
contact Jevel between the reinloreing burs fn the two directions, and assaming #5 harg
with 3-in. clear cover,

average d = 6.30 — 0.75 — (.63 = 5.12 in.
Assuming ¢ = 0.90, the largest R, required is

M, 5000(12} .
= = = 254 s
Bo = 27 = 000(12)E 121 pst

From Fig, 3.8.1, the reinforcement ratio p for this value of Ry is about 0.007, whicl is
well below 0.375 pp, = 0.0139. Hence excessive deflection should not be expected; this
is further verification of the minimum thickness formulas given in ACI-9.5.3.

The factored floor load w, is

wy = L.2wp + 1.6y, = 319 psf
Since all oy Lo/ Ly values are well over 1.0, take V from Eq. (16.13.1) as
_ L150,8 _ L15(0.819)(20)

u = 7 ) = 3.67 klpS
V, = 2./77 bud = 2+/3000(12)(5.12) g = 6.73 kips
#V, = 0.75(6.73) = 5.05 kips > [V, = 3.66 kips] OK

Note that the factored shear 3.67 kips is the maximum at strip 1-1 of Fig, 16.13. L actually,
the average for all such strips will be lower. «

Design the reinforcement in the exterior and interior spans of a typical column strip and
a typical middle strip in the short direction of the flat slab design example. As described
earlier in Section 16.3, f7 = 3000 psi and £, = 40,000 psi.




TABLE 16.13.1

Factored Moments in a Typical Column Strip and hiiddle Strip, Example 16.13.2 (Flat Slab)

Exterior Span Interior Span
Ling Moments at Critical Negative Positive Negative | Negative Positive  Negative
Numbor Section {ft-kips; Moment Mounent Moment Moment Moment  Moment
1 Totad 3 in colmm and
mickde strips (Fig. 16.10.2)
(vigid frame C) -58 + 147 —205 180 +96 ~190
2 Percentage to column strip
{Tuble 18.12.5) 91.3% 60% 5% 5% 6% 5%
3 Moment in column strip -80 +88 ~154 —-143 +38 ~143
4 Maoment in middle strip -3 +59 -51 47 +38 —-d47
TABLE16.13.2 Design of Reinforcement in Column Strip, Example 16.13.2 {Flat Stah) (, = 40,000 psi, 7 = 3000 psi)
Exterior Span Iaterior Span
Line Negative Positive Negative Negative Positive Negutive
No, 1 Momeet Moment Mennent Maoment Mennent Moment
1 Mament, Tuble 16.13.0, line 3 -850 58 ~ 154 - 143 +58 —143
fi-kips)
2 Width &s of diop or stip (in.) 100 120 100 100 120 100
3 Effective depth d (in.) 8.81 6.44 8.81 8.81 C G4 88
4 M, Jep (Be-kips) -89 +98 ~171 =159 +64 ~ 159
5 Rulpsiy = M, fighd®) 138 236 264 246 154 246
G #.0 (3.8.5) or Ifig, 3.8.1 0.35% 0.62% (. 70% €.64% 0.39% 0.64%
7 Ay = pbd 3.08 4.79 8.17 5.64 3.01 5.64
8 A= 00020 240 L8O 2.40 240 1.80 240
9 N = lurger ol (7) or (80,31 4.9 5%} 19.9 18.2 9.5 18.2
Lo N = width of strip/(2e) 5 § 5 5 & 5
11 N requived, lrger of () or (10) 10 16 20 19 0 19
= HRKI0.3) + 20(7.5) = 1200 2 for Hegalive monent region,
TABLE16.13.3 Design of Reinforcement in Middle Strip, Exampie 16.13.2 (Fiat $lah) {f, = 40,000 psi, £/ = 3000 psi}
Exterior $pan Interior Span
Line Negative Positive Negative Negative Positive Negative
No. Tem Moment Moment Moment Moment Moment Moment
1 Moment, Table 16.13.1, line 4 -8 +59 =51 -47 +38 —47
{ft-kips)
2 Wiclth of strip, b (in.} 180 180 180 180 180 1580
3 Llfective depth d (in) 6.4 3.81 6.44 6.44 5.8k 644
4 M. /¢ (Be-kips) -9 +63 -57 ~52 +42 ~52
3 Ha(psty = M, H{@bd2) 14 128 92 84 83 84
G 2 1. {385) or Fig. 3.8.1 0.04% 0.32% 0.23% 0.22% 0.21% €.22%
7 A, == phet (.46 335 2.67 255 2.20 2.35
8 A, = 0.002h 270 250 2,70 2,70 270 .70
9 N = larger of (7} or (8)/0.31" 8.7 108 87 5.7 8.7 8.7
10 N = width ofstripa’(ﬁt) 12 12 12 12 12 12
11 N required, larger of {9} or (10) 12 12 12 12 i2 12

A mistare of #3 audt 4 burs could have been selected,

662
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16.14 Beam {if Used) Size Requirement in Flexure and Shear =% 663

Span
ive —6:}—-' - -—e 3t - . £
ent [d=944" d=6.44" o=9.44" - s S 5‘}
& & Pt
= i i i
‘ B i =L E
6 J=6.44" J=6.44" d=6.44" < S e
. .o L s,
0% —L & 3 & |
3 d=9.44" d=6.44" d=9.44" v v ¥ ;
18 €|‘> . — Hhe L. ® A gy s
0 psi} Figure 16.134 Effoctive depths provicled at eritical sections in flat slab design example.
pan SOLUTION  {a) Moments in column and middle strips. The typical column strip is the
e 7 column stiip of equivalent rigid frame C of Fig. 16.10.2; but the typical middie strip is
it the sum of two half middle strips, taken from each of the two adjacent equivalent rigid
frames C. The factored moments in the typical column and middle strips are shown in
Table 16.13.1.
(b Slab thickness for flexure. For f = 3000 psi and f,, = 40,000 psi, the maximum
i percentage for tension reinforcement only is pyx = 0.0232 (Table 3.6.1). The actual
percentages used (line 6 of Tables 16.13.2 and 16.13.3) are nowhere near this maximum.
Thus there is ample compressive strength in the slab. This phenomenon is usial because
1% of the deffection control exerted by the minimum slab thickness requirements,
L {¢) Design of reinforeement. The design of reinforcement for the typical columm
) strip is shown in Tuble 16.13.2; for the typical mididle strip, it is shown in Table 16.13.3.
Because the moments in the long direction are larger than those in the short direction,
: the larger effective depth is assigned to the long direction wherever the two layers of
o steel are in contact. This contact at crossing oceurs in the top steel at the intersection of
e column strips and in the bottom steel at the intersection of middle strips. Assuming #3
bars and 3-in. clear cover, the effective depths provided at vacious eritical sections af the
0 psil < long and short directions are shown in Fig, 16.13.4. <
L
- 16.14 BEAM (IF USED) SIZE REQUIREMENT IN FLEXURE AND SHEAR
e
% The size of the beams along the column centerlines in a two-way slab {with beams) should
be sufficient to provide the bending moment and shear strengths at the criticat sections.
For approximately equal spans, the largest bending moment should occur at the
exterior face of the frst interior cohumn where the available section for strength compu-
, tation is rectangular in nature beeause the effective slab projection is on the tension side,
: Then with the proliminary beam size the required reinforcement ratio p snay be detor
mined. Deflection is unlikely to be a problem with T-sections, but must be nvestigated
1% if excessive deflection may cause difficulty. .
) Phe maximinm shear i the bean should also occur at the exterior face of the first
) interior column. The shear diagram for the esterior spae sy be obtaioed by placing the

negative moments alveady computed for the beam at the face of the column at each end
and loading the span with the percentage of floor load interpolated (ACT-13.6.8) between
apLa/Ly =0 and e Lo/l 2 LO. As discussed in Section 10.2, the stew (web) Dy
should for practicality be sized such that nominal shear stress v, = V, f{(¢h.d) does not
exceed about 6,/F7 at the critical section d from the face of support.
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» EXAMPLE 16.14.1

Investigate if the preliminary overall sizes of 14 x 28 in. for the fong beam wed 12x 24
in. for the short beam are suitable for the two-way slab (with beams) desigu cxanmple,

SOLUTION  Since the values ofay, or ofaf; La/Ly, ave considerably larger than 1.0 forsdl
beams spans, there is to be no reduction of the floor load going into the beams frow the
tributary areas (ACI-13.6.8). As shown in Fig. 16.14.1, the most eritical span is B1 for the
long direction and B5 for the short divection. Actually, the load acting on the clear spn
of the beam should include the foor Joad (inchidling the weight of the heam sten itself
ar any other load) directly over the beam stem width plus the floor load on the tributary
areas honscled by the 45° lines lrom the comer of the panel, Also for practicat purposes
it Is ucceptable to consider the shear due to floor load at the face of column equal t
one-half of the floor load on the tributary areas between colymn centerlines, as shown in
Fig. 16.14.1.

Er:;:.:::::::::::—:;j':r:":‘:::::::': ____ —.¢|}' - i 10 8 1

H
| i Factored floor it P !
} :; load = 319 psf ;: 8.38k/ft B6.38k/Mt
I i ol
i | I [ Ly
, N 3
. o H
O [ 1
= | "
R Beam B1
S 6.36k/ft
E 39 frk 140 ik
i
"
]
]
]
1
1 [ i
In Beam B85

Figure 16.14.1  Beams around the two-way slab panel.

{a) Size of long beam BL. The negative moments at the face of supports, 57 and 216
ft-kips, are taken form Table 16.12.4, frame A.

21.
weight of beam stem = %Q(ISU) = 314 lb/ft

masimum negative moment = 15(1.2)(0.314)(23.75) + 216

21 + 216 = 237 fe-kips

Il

b=14in. d =28 2.5(ssume one layer of steel) = 25.5 in.
oM waeen o
$bod® ~ 0.90(1aN25 .58 oA Pt

RH

From Fig, 3.5.1, p = 0.010; which is wel! below s = 00232, Pevhaps Uie beam sixe
should be reduced. From Fig, 16.14.1,

total factored foor load on BI = 6.38(15) = 95.7 kips

2375 | 216 —-57
max ¥, = L15(1.2)((.314) s + ={95. —_——m
(L.2){0.314) 5+ 2{95 7} + 53T

=5.1+47.9 +6.7 = 59.7 kips

¥ 16.15 S
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_ Va _ 58,700 _ . y :
= e = s - e =4 <6V OK

{b) Site of short beam B5. The negative moments at the face of supports, 39 and 140
f-lips, aretaken from Table 16.12.4, frame C.

weight of beam stem = z‘1?'-({];-5?-}-(1:3(}) = 219 Ib/lt
maximum negative moment = %(1.2)(0.219)(18.75)2 + 140
= 9+ 140 = 149 fe-kips
h=12in. d = 24 — 2.5 (assume: one layer of steel} = 21.5 in.
M, 148(12,000)
R, = = = 358 psi
Phe® ~ DO0ZNEISE o0 P
From Fig. 3.8.1, p = 0.0108, which is wel below gy = 0.0232. From Fig. 16.14.1,

total factored floor load on B3 = 6.38(10) = 63.8 kips
1875 1 140 — 39
ax V, = L15{(1.2)(0. e = —{ B3, —inee
max {1.2)(0.219) 5 + 2{63 8) + 1875
= 2.8 + 3L.9 + 5.4 = 40.1 kips
\2 40,100 o " '
= Fhd = 0ONELE) = 38/ <0/f; oK

As mentioned above, the size of hewms in both the long and short divections should
probably be reduced; the nominal stress o, is well below 6,/F7 at the face ol support and
is even fower at d therefrom.

Uy

16,15 SHEAR STRENGTH IN TWO-WAY FLOOR SYSTEMS

The shear strength of a flat slab or flate plate floor around a typical interior column under
dead and full live loads is analogons to that of a square or rectangular spread footing
subjected to a concentrated column load, except each is an wverted situation of the
other. The area enclosed between the parallel pairs of centerlines of the adjacent panels
of the floor is like the area of the footing, because there is no shear force along the panel
centerline of a typical interior panel in a floor system. Consequently the discussion heve
is essentially identical to what is included in Chapter 20 on footings.

The shear strength of two-way slab systens without shear reinforcement has been
studied by many investigators [16.76-16.92, 16.142]. An excellent swnary is provided
by ASCE-ACI Task Committee 426 [16.83).

Wide-Beam Action

The shear strength of the flat slab or flat plate should be first investigated for wide-beam
action and then for two-way action (ACI-11.12), In the wide-beam action, the eritical
section is parallel to the panel centerline in the transverse direction and extends across
the full distance between two adjacent longitudinal panel centerdines. As in beams, this
eritical section of width by, times the effective depth d is located at a distance «f from the
face of the egnivalent square colunm capital or from the face of the drop panel. if any.
The nominal strength in usual cases where no shear reinforcement is used is

V, = V, = 2/ F bd (16.15.1)
according to the simplified method of ACI-11.3.1.1
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Figure 16.15.1 Punching shear failure along » trancated pyramid around the colunus.
(Photo courtesy of fames O, Jirsa)

Twe-Way Action

Asecond failure mode may oceur by diagonal cracking along a truncated cone or pyramid
around columns, concentrated loads, or reactions (see Mg, 16.15.1). This fuilure modeis
commonly called “punching” shear. The critical section is located so that its peripheryby
is at a distance d/2 (that is, one half the effective depth) outside a column, concentrated
load, or reaction,

The ACI Code states that by is a “minimum but need not approach closer tan
df2.” Some confusion may arise as to whiether the “minimum” at d/2 would require us-
ing a curved-corner perimeter around a square or rectangular column, Since exactness is
neither improved nor reduced by caleulating the critical seetion bo by such elaborate pre-
cedures, ACI-11.12.1.3 permits the critical section for square or rectanguiar loaded arens
tohave “four straight sides™. For slabs with changes in thickness, such as slabs with capitals
or drop panels, shear must be checked at several sections to determine the eritical section.

When shear reinforcement is not used, the nominal shear strength V, = V,, which
i* given by ACI-11.12.2.1 as the smallest of

£

V, = (2 + %) \/:l:" bod, ACI Formula (11-33) {16.15.22)

Vo= (EE}E + 2) VFbod, ACI Formula (11-34) (16.15.2b}
o

and
Ve = 4/ byd, ACI Formula (11-35} (16.15.2¢)
where
bo = perimeter of critical section ‘
Bz = ratio of long side to short side of the columna
s = 40 for interior columns, 30 for edge columns, and 20 for corner columns.

Equation (16.15.2) recognizes that there should be 2 transition between, say, a
square column (8, = 1) where V, might be based on 4./F for two-way action, and a wall
(B = co) where V, should be based on the 2/f7 used for one-way action as for beams,
However, unless 8, is larger than 2.0, Egq. (16.15.2a) does not control.

F.quation (16.15.2b) was new with the 1989 ACI Codl, Though designers have gener-
ally been investigating critical sections around the perimeter at changes in slab thickness,
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a, both (1) as the distance

to the critical section from the concentrated load increases, such as for drop panels, and
(2) as the perimeter becomes large compared to the slab thickness, such as, for example,
a 6-in. slab supported by a 10-ft square coluron (bo/d = 80}, The new equation accounts

for this reduced strength.
In the application of Eqs. (16.15.2),

by is the perimeter of the critical section ata

distance d/2 from the edge of column capital or drop panel. For Eq. (16.15.2h}, «, foran
“interior cohunn” applies when the perimeter is four-sided, for an “edge column” when

the perimeter is three-sided, a
As shown by Fig. 16.15.2, Eq. (16.15.2b) will give a Ve
columns (or very thin slabs), such as
4d, a square edge column having side larger th
#having side lasger than 4.54. Thus, the n
genemlly set by Eq. {16.15.2¢), that is V,

Eq. (16.15.2b) gives a lesser value.

(a} Interior column

by =38+ 2d

- 20
It s=4.380, g =2

(b} Edge column

nd for a “corner column” when the perimeter is two-sided.
smaller than 4\/ﬁ bod for large
a square interior column having side larger than
an 4.3, and a square corner column
ominal shear strength V; in a two-way system is

= 4\/72 bod, unless either of Eq. (16.15.2a) or

b°=25+d

20 _
If 5= 4.54d, -5;‘,‘5—2

{c} Corner colurmn

Figure §6.15.2  Minimum size of square colimns for V. = 4ﬁf Il

Shear Reinforcement

ven when shear reinfore

to a maximum of

Further, in the design of any sh
not exceed 2\/72 By (ACI-11.12.
Section 16.16 is used (ACI-11.12.

Unlike the destgn for beaws, a minimum
quired for slabs (ACI-11.5.6.1) because there is the po
the weak and strong areas, For
failure may occur at loads less than V..

V, =V, 4V, £ 6/ F7 bod

cinent is used (ACI-11.12.3.2), the nominal strength is limited

(16.15.3)

ear reinforcement, the portion of the strength Ve, may
3.1). I shearhead reinforcpment such as deseribed in
4.8), the maximum V,, in Eq. {16.13.3) is 7\/;’—(' Dol

amount of shear reinforcement is not re-
ssibility of load sharing between
deep, lightly reinforced one-way slabs, however, shear
especially if made of high-strength concrete

ii
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(ACI-RL13.6) und it would be prudent to provide a minimum amount of shear rein
forcement even if it is not required by the code in these cases. .

The investigation for concentric shear (without moment) transfer from slab to columa
is shown in the following two examples, for the flat slab and fat plate design examples,
respectively. When there must be transfer of both shear and moment for the slab to the
column, ACI-11.12.6 applies, as will be discussed in Section 18,18,

» EXAMPLE 16.15.1 Investigate the shear strength in wide-beam and two-way actions in the flat slab design
example for an interior cobimm with 1o bcuding maoment to be translferred. Note that

£ = 3000 psi.

SOLUTION  {a) Wide-beam action. Investigation forwide-beam action is made for sections
-1 andd 2-2 in the long dircetion, as shown in Fig. 16.15.3(a}. The short direction hasa
witler eritical section and shorter spy; thus it does not control, For section 1-1, if the
entire width of 20 £ is conservatively assumed to have an offective depth 0f 6.12in,,

Vi = 0.337(20)(9.52) = 64 kips (section 1-1)

Vo = Ve = 2./F] (240)(6.12) k5 = 161 kips
¢V, =0.73(161) = 121 kips > V, i 0K
b {2
L — - - ——
; avgd=6.12""':_" .
, 8
lawc"ﬂ:'l.‘l?"—-Ii"—Q.SZ"—'- I ( Drop 7 2-—%
Equivalent L e¢;I> 3 . 5
) sqtl.lare i A ?l .Cl,
column & ! '
-——14.43"J— T
| | .
L . et e — e b
l_ o 2 !
i 25'-0" - L L —
{a) Wide-beam action
8
(5]
P
Dlew Section 2-2
Section 1-1 . to= Drop
43 == R
— ¢ £ %
’ 2 T ' Nl
: T~ o
avg R & Sl o
2 R -a'—4uLa"§ 7 306"
R vk 2 e A ST
lqﬁ 25 i‘ 25! 0» “""""-""""""]

(B} Two-way action

Figure 16.15.3  Critical sections for shear in flat stab design example.
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I, however, b, is taken as 84 in. and d as 9.12 in. on the contention that the increased
depth d is only over a width of 84 in.,
Vo = Ve = 2/F1(84)(9.12) 15 = 84 kips

This latter value is probably unrealistically low. For section 2-2, the shear resisting section
has a constant d of .12 in ; thus

V. = 0.337(20){7.82) = 53 kips (section 2-2}
#V, = 121 kips > ¥, OK
It will be rare that wide-beam (one-way) action will govern,

{b) Two-way action. The critical sections for hwo-way action are the clreular section
1-1atd/2 = 4.56 in. from the edge of the column capital and the rectangular section 2-2
atd/2 = 3.06 in. from the edge of the drop, as shown in Fig. 16.15.3(b). Since there are
no shearing forces at the centerlines of the four adjacent panels, the shear forees around
the critical sections 1-1 and 2-2 in Fig. 16.15.3(b) are

2 2
V, = 0337 [soo - f(i;@-] + 1.2(0.038) [7(3.33} - -”-{f:ﬂ}

= 159.2 + 1.5 = 161 kips  {section 1-1)
In the second term, the 0,038 is the weight of the 3-in. drop in ksf,
Y, = 03371300 = 8.847.51) = 46 kips  (scction 2-2)

Compnte: e shear strength at seetion 1-1 aronnd the perimeter ol the capital | Fig,
16.15.3(b}},
b _ 2171
d 912
Since by/d > 20, and B, = 1, Eq. (16.15.2b) controls. Thus,

by = r{5.76)12 = 217.1 in.; =238

PV =9V =¢ (% + 2) VT bod = $(3.68,/F7 bod)
= 0.75(3.68,/F1)(217.1)(9.12) 7k = 299 kips

At section 2-2, Fig. 16.15.3(b},

by 3924

bo = (2834 + AT =3024in; 7= =

64.1

and sinee bo/d > 20, Eq. (18.15.2b} controls. Thus,

Ve =V, =¢ (% + 2) VT bod = ¢(2.62./F7 bod)

= 0.75 (2.62,/77) (302.4)(6.12) gz = 258 kips

Though both sections 1-1 and 2-2 have ¢V, significantly greater than V,, the section
around the drop panel is loaded to u slightly higher percentage of its strength (50% for
section 2-2 vs 47% for section 1-1). Prior to the 1889 ACI Code, using 4,/F7 bod, the
shear strength at the drop panel perimeter would rarely have been of concern. Shear
reinforcement is not required at this interior location, «
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» EXAMPLE16.15.2 Investigate the shear strength in wide-bean and two-way actions in the fdt plate design

example for an interior column with no bending moment to be transferred. Note that 3
S = 4000 psi.

SOLUTION  (a) Wide-beam action. Assuming f—f-in. clear cover and #4 bars, the averuge
effective depth when bars in two directions are in contact is

avgd = 3.50 — 0.75 — 0.50 = 4.25 in.
Referring to Fig. 16.15.4(a),
Vi = 0.198(12)6.65 = 15.8 kips '
PV, = ¢V, = 0.75(2/4000)(12)(12)4.25 . = 58.1 kips

1

2.125"

Section 2-2

: Avgd = 425"~ le—p.65"—
10"
[

LA -
2.125"3 M-m"
2.125" -~ 2,125"

~16.25"
- . - R J &

k]
15'~g" !
{a} Wide-beam action

hadeg |

14.25" {12-0"

13

12"

1
'

i TN (L

{b) Two-way action

Figure 16.15.4  Critical sections for shear in flat plate design example.

(b) Two-way action, Referring to Fig. 16.15.4(b),
Ve = 0.198[15(12) — 1.35(1.19}] = 35.3 kips
The perimeter of the critical section at /2 wound the column is
b“ 61.0 g
o ——— oz 4 20
q=qas =8

Since by/d < 20, and B, = 1.2, Eq. (16.15.2¢) controls. Thus,

V,, = 4\/.,7; bo(l
P Vo = ¢V, = 0.75(4v/4000}(61.0)4.25 ez = 49.2 kips

by = 2{16.25} + 2(14.25) = 61 .0 in.;

[16.15.2¢]
OK

Shear reinforcement is not required at this interior location. 4

# 16.16 SHEAR REINFORCEMENT IN FLAT PLATE FLOORS

In fat plate foors where neither column capitals nor drop panels are used, shear rein-
forcement is frequently necessary. In such cases, two-wiy action, usually controls. The
shear reinforcement may take the form of properly anchored bars or wires placed in
vertical sections around the column [Fig. 16.16.1(a}], or consist of shearheads, which are
steel I- or channel-shaped sections fabricated by welding into four (or three for an exte-
rior column) identical arms at right angles and uninterrupted within the column section
[Fig. 16.16.1(b)].
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flat plate hes Section 5 Critieat
srredl Note th at which - section
g v,=2,  Critical
Ao section
- ST
2ars, the 1R =
! b a s i
H g "d. :
I\ ,}
\\\ — ’o’
Stirrups —/
s ik
L
Double U-stirrup — ;..__‘L,..[
’ inka 1 ] | D
22 Lo ] T
3 {a} Bar reinforcement {b) Shearhead reinforcement
25" 17-0% i Figure 16161 Bar and shearhead reinforcement in flat plate floors.
'8 Although widely used, stirrups are often difficult to install in the slab around the col-
3 ummn hecause the region is commonly congested with the columm and slab reinforcement.
— Shearheads can be used instead, but they can be more expensive to fabricate and install.
Alternatively, shear studs have been used in Canada and Evvope as shear reinforcement
- in slabs [16.101, £6.144], and they are #lso widely nsed on the West Coast in the United
tion States, They consist of headed steel studs welded to a steel strip as shown in Fig, 16.16.2,
3<20
[16.1528
dps i
i
re used, sheard
sually conb
3 or wires p
iearheads, R AT e ey
or three for - S CRRCARE
1 the colums, Figure 16,162 Shear stud reinforcement.

{Photo hy fosé A. Pincheira.}
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The strips may be arranged in orthogonal directions for rectangalar or squiare columy
(Fig. 16.16.2) or in radial directions for circular columns. The ACI Code containg na spe-
cific provisions for this system, however, AGI-ASCE Commniittee 421 provides specific
clesign recommendations for the use of shear studs as shear reinforcement in slabs. )

A summary of shear reinforcement for Hat plates has been provided by Dilger and
Gliadi {16.99]. The strength of two-way shb systems witls shear reinforeement has bees
summarized by Hawkins [ 16.94]. Corley and Hawkins [16.93, 16.110] have studied shear-
head reinforcement. Other studies of shear reinforcement in flar plates have been tde
by Ghali, Dilger, et al, [16.95-16.102], and Pillai, Kirk, and Scavuzzo [16.115].

When bar or wire shear reinforcement is used, the nominal strength is

Vo=V, +V, =2/ byd + f—“i{ﬁ {16.16.1)
where by is the periphery around the critical section for two-way shear action and A, is » EXAMPLE 10
the total stirvup bar area around by. Such bar or wire reinforcement is required wherever
Vi exceeds ¢V based on V, of Eqs. (16.15.2a to ¢). However, in the design of shear
reinforcement, ¥, for Eq. (16.16.1) muy not be taken greater than 2,/f7 bod, and the
maximuwin nominad strength V, (.., ¥, -+ ¥, ) when shear reinforcement is used Iy not
exceed 6,/f7 bud according to ACI-11.12.3.2.

Shear strength may be provided by shearheads under ACI-11.12.4 whenever V,/p
at the eritical section is between that permitted by Eqs. (16.13.2a to ¢) und ?\/fj Dyd.
These provisions, based on the tests of Corley and Hawkins [16.93], apply only where
shear alone (e, no bending moment) is transferred at an iderior cohuun, When there
is moment transfer to colwmns, ACI-11.12.6.3 applies, us is discussed in Section 16.18.

With regard to the size of the shearhead, it mast furnish a ratio o, of 0.15 or larger
(ACL1L.12.4.3) between the stiffness for each shearhead arm (E,L) and that for the
surrounding composite eracked slab section of width (2 -+ o), or

B,

i y B ——ee 2 (), 15 16.16.2
iy E, (composite [} 0.15 (16.16.2

where ¢ is the dimension of the column measured perpendicular to the span for which
the moments are being caleulated. The steel shape used must not be deeper than 70
times its web thickness, and the compression flange must be located within 0.3 d of the
compression surface of the slab (ACI-11.12.4.2 and 11.12.4.4). In addition, the plastic
moment capacity M, of the shearhead amn must be at least (ACI-11.12.4.6).

f vr 1] .
min M, = E?;L&? [h,, ta, (Lv - -2—)] (16.16.3)
where
1 == number {usually 4) of identical shearhead arms

Vi = factored shear around the periphery of column face
hy = depth of shearhead
Ly
1 = dimension of the column measured in the direction of the span for which the
moments are being caleulated .
¢ = 0.90, strength reduction factor for tension-controlled members

length of shearbead measured from column centerline

fl

Equation (16.16.3) is to ensure that the required shear strength of the slab is reached
before the flexural strength of the shearhead is exceeded.
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The length of the shearhead should be such that the nominal shear stren gth ¥, will
not exceed 4,/ 7 bod computed af a peripheral section located at %(LtJ —c1/2) along the
shearhead but no closer elsewhere than d/2 from the column face {ACI-11.12.4.7 and
11.12.4.8). This length requirement is shown in Fig. 16.16.1(b).

‘When a shearhead is used, it may be considered to contribute a resisting moment
{ACI-11.12.4.9).

. dor, Vy, c
My =S5 (LU ) (16.16.4)

1
2
to each column strip, but not more than 30% of the total moment resistance requirect
in the column strip, nor the c¢hange in column strip moment over the length L, nor the
required M, given by Eq. (16.16.3).

Using the dimensions of the flat plate design example but changing the live load to

190 psf, investigate the shear strength for wide-beam and two-way actions around an

interior column. {Cthe required neminal shear strength V,, for two-way action is hetween
that permitted by Eqs. (16.15.2) and 6,/f] bod, determine the A,/s requirement for
shear reinforcement at the peripheral eritical section and show the nominal shear stress
(which s factored shear V,, divided by ¢bod) variation from the eritical section to the panel
centerline. Use f = 4000 psiand £, = 50,000 psi; assume #5 bars for slab reinforcement.

SOLUTION  {a) Wide-beam action.

wy = L2y + 1.6y, = L.2150)(5.5/12) + 1.6(180)
=83 + 304 = 387 psf
avg d in column strip = 5.50 — 0.75 - 0.63 = 4.12 in.

For a 12-in.-wide strip along section 1-1 of Fig. 16.16.3,

V. 387(666)
O = Ghed - 075(12)(418)

(b} Two-way action. Referring to Section 2-2 of Fig. 16.16.3,
[?() _ (60.48

70 psi < (2/f = 126 psi) OK

by = 2{16.12) + 2(14.12) = 60.48 in; 14.7 < 20

PR ST
I -
L
avgd = 4.127 6.8
10" X 12" colurnn ’
14.12" &
t}" 1i-Section 2-2 u)
Ry o
16.12" »
5% siab
1 (]
150 k Figure 16163 Critical sections for
= shear, Example 16,16.1,

ATy
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» EXAMPLE 16.16.2

- ml - JR—
b ml
@ =
T = Sr---n
& !
s ] ! el : - N Excess {, ~ 277 ) diagram
o ) ES
I 3 A m——— Wbl g i
e r -.‘éf'.nz 37456 @ lJJ}h}; 2+/F = 126 psi
- AR : 21 Ll e -
=
2 I N 44 psi
z 81.94" 51.94"
- \\-1 7 Z 3 4 3 6
i 5_g* J: 81.94" in long direction

64.94" in short direction
Figure 16.16.4 Viwiation of two-way nominal shear styass (V,/d bod}, Example 16.16.1.

With a rectangular perimeter by having long to short side ratio less than 2 {meaning 8.
Jess than 2), and Dy/d loss than 20 for an interior column, Eq. (16.15.2¢) controls; thus,
the .‘;tr(rngl'!l without shear reinforcement is V, = 4\/]?.’)0(!. Using nomina stress o, =
Vie/$ bad,

_ Vi, 3870180 — 1.34(1.18)]
T opbpd T 0.T5(60.48)(4.12)

Bn = 369 psi
Since the maximum nominal shear stress of 369 psi exceeds 4,/77 = 253 psi but not the
maxiannm G/ f7 = 380 psi permitted when bur or wire shear reinforcement is wsedd, shear
reinforcement is required 1o take the excess stress v, which exceeds 2,/77 = 126 psi.The
shear reinforcement in this case may consist of properly anchored bars or wires and nead
not beashearhead. The Ay /s requirement around the critical section 0f60.48 in., peciphery
is, from applying Eq, (16.16.1) with requived V,, = V,./g,

AI! Vu/q‘) - (2\1 f(:)bﬂd (vu - 2\/ ié)b(l

g fyd fy

_ (369 - 196)(60.48) _
50,000 =024

Assuming s = d/2 % 2-in. spacing,

It

A, = 0.59 s in.
If two double #3 U stirrups are used at each of the four sides,
provided A, = 4(4)(0.11) = 1.76 sq in.

The variation of the nominal shear stress v, from the maximum value of 369 psi
to zero at the panel centerline over the equally spaced points 2 to 6 is shown in Fig.
16.16.4. The nominal shear stress (V,,/¢ bod) drops to 126 psi in a rather steep manner
s0 that the number and spacing of these U stirrups can be laid out by the aid of the excess
(v — 2/F7) diagram. «

Redesign the connection using shearhead reinforcement for the two-way shear action of
Example 16.16.1.

SﬂLUT[pN (a) Tiwo-way action. Since the maximum nominal shear stress oy = V, /b bl
of 369 psi is between 4,/F7 = 253 psi and the maximum of 7/ f = 443 psi when
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L

v

Figure 16165  Hequired length of shearhead, Example 16.16.2.

shearhead is used, shearhead reinforcement for the interior calumn {having no moment
transfer to column) is permitted to be designed according to ACI-11.12.4.

(b) Length of shearhead. The length of shearhead should be such that the nominal
shear stress is less than 4,/ computed around a periphery passing through points at
%(Lb. — ¢1/2) from, but 2o closer than, d/2 to the column faces. Assuming a square as the
critical periphery since the shearhead is to have four identical arms (ACI-11.12.4.1). the
requirec by (ft) may be computed from Fig. 16.16.5; thus,

387180 — (ho/4)?]
A0 = G Tt 412

Neglecting the (bp/4)* in the numerator,

b 3870180)
= O5R0.7574.12

The required distance L, may be computed from the following geometric considerations,

From right triangle oab,
3 [+ c bu
bt A LA -
[4 (te-3)+ z} =7

which gives, based onleg 0b, ¢ = ¢3 = 10 in.,

&

T% = 7.4 ft (88.5 in.)

Ly = (%}3 -—5) ; +5=192in.

and, based on leg oa, ¢ = ¢y = 12 in,,

88.5 4
=2 ~6]=+6=!89in.
l (4\/2- )3
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—_———— L
™ - nA, = 8(0.85) = 6.8 sq in. # 5 burs
1240 ri_; gz ' T\ /fl ;
A " 1nA = 81.67; R
=1 ¢ =Tamin o b
ID' e

avgd = 4.12%

7
S3xX5677
¢y +d= 14,127

i
L

. . t 0.50"
i

| Column strip width

Section 4-4

|

|

|

|

|
L

Column strip width = 72"

Figure 16166 Cracked slab section of width {(ca 4+ o), Exatnple 16.16.2,

For the periphery abed not to approach closer than /2 to the periphery of the colum
section,

oa = b = 8.06 + 7.06 = 15.12 in.

But,

ot =6+ %(L,; ~8) and ob=5+ %(Lu - 3)

which gives

Ly = (15.12 = 6)$ + 6 = 18.2 in.
Ln = {15]2 - 5);% + 5= 185in.
Use¢ Ly, = 20 in.

(e Size of shearhead. The shearhead stiffness must be at least 0.15 of that of the
composite cracked stab section of width (¢3 + d). It can be shown that 14-#5 hars and
10-#5 brars wre required for negative slab reinforcement in
of the Jong and short directions, respectively, The composite cracked section across width
A-A in Fig, 16.16.6 should be used because there is more steel in the slub in the long
direction. The steel area A, in section A-A, of width ¢g + ¢ is

the 72-in.-wide column strips

_104+d

A2
A = 14

5 (14)0.31) = 75-(.14)(0.31) = 0.85 s in.

Assume an §3x5.7 section for the shearhead placed as shown in Fig. 16.16.6. The §3x5.7
is the shallowest available rolled steel I- or channel-shaped section. With 2.in. coverat
the top face of slab and #5 bars for top reinforcement in the two orthogonal directions.

average d will be 4% fn., but the caver to the compression face (bottom) of the rolled

shape will be only 5 in. Even Z.jn. cover ot the compression face would require that

all bottom slab steel be cut short. If the 3-in. cover over the rolled shape is not deemed

adequate, either u thicker stab must be used or a shallower shearhead fabricated {welded)
from three plates would have to be used.
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The centroidal axis of the composite cracked section may be obtained by equating
the static moments of the compression and tension transformed areas,

512-%‘— = 13.4(2.0 — 2} + 6.8(4.44 — x)
r = 1.751n,
composite [, = w + n{ly of steel scction) 4 13.4{0.25) + 6.8(2.69F
= 25.2 4 8(2.50} + 0.8 +- 49.2 = 95.4 in.*
provided &, = E;(2.50) = 3250 =021 > 0,15 OK

E.composite I} = 954

The plastic section modulus of the $3%5.7 is given by the AISC Mannal® as
1.94 in? Using A36 steel, the provided M, is

provided My, = 36(1.94) = 69.3 in.-kips
The required M, is computed from Eq. (16.16.3} as

v .
recguired My = -s-;)- {J'r5 “+ oy (rcquirt-:d L, — E_—)—'-)]
0.387(180)
= 21{19.2 -
S0.90) {3+0.21{19.2 - 5)]
= 57.9in.-kips < 69.8 in.-kips OK

(&) Shearhead contribution to resist negative moment in slab. The negative moments
at the face of column in the 72-in, column strip width in the long and short divections are
(387/198)0.75} times those for equivalent rigid frames A and € in Fig. 16.10.3, wherein
(3877198) is the ratio of factored loads (using 190 psf compared to using 72 psf live load)
on the slab and .75 is the factor for transverse distribution shown in line 12 of Tuble
16.12.6. Thus

column strip moment in oug direction = o8
' <

(0.75)37.8) = 55.4 fr-kips
. . o 387 )
cohumn strip moment in short direction = 5 (0.75330.1) = 44.1 fr-kips
(!

The resisting moment of the shearhead may be computed from Eq. (16.16.4),

M, = 'l"’;r;:f" (L.., - 521)

_ 0.90{0.21)(0.387)( 180}
- 8
= 1.92 or 2.06 ft-kips

(20-6) or (20-3)F
Thus the contribution is rather small and the revision of slab reinforcement is un-
necessary. «

*See Mantad of Stecl Construction, Load end Resistanee Faetor Design (Sed o), 2001. Chicugo: American
Institute of Steel Construction.
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& 16.17 DIRECT DESIGN METHOD—MOMENTS IN COLUMNS

» EXAMPLE 16.17.1

The moments in columns due to unbalanced loads on adjacent panels are reaclily available
when an elastic analysis is performed on the equivalent rigid frame for the various pattem
loadings. In the "direct design method,” wherein the limitations listed in Section 16.7are
satisfied, the longitudinal moments in the slab are prescribed by the provisions of ACI:
13.6.3. In a similar munner, the code preseribes the unbalanced moment at an interfor
column as follows [ACI Formula {13-7)]:

1
M =007 [(wu + 5::);,) Lol - w’,,L;,_(L:,)f*] (16.17.1)

where
wy = factored dead load per unit area
wy, = factored Hve load per unit area
why. Ly, Ly, = quantities referring to shorter span

The moment is yet to be distributed between the two ends of the upper and lower columns
meeting at the joint.

The rational for Eq. (16.17.1) may be observed from the stiffness ratios at a typical
interior joint shown in Fig. 16.17.1(a), wherein the distribution factor for the sum of the °
colurn end moments is taken as { and the unbalanced moment in the colurmn stripis
taken to be 0.080/0.125 times the difference in the total static moments due to dead plus
half live load on the longer span and dead Ioad only on the shorter span.

Far the edge column, ACI-13.6.3.6 requires using 0.3Mg as the moment to be trans.
ferred between the slab and an edge column,

]
1

Col.1
Col, 1

{wo-l-%m_)l.z {vp +-12-w,_}.f_2

wp 'Ly i
i naxxxlBBEERE IFEERNE
Span 2 Span 1 Span 1
o™ o~
(ab lmterior joint (b} Exterior joint

Figure 16.17.1 Direct design method—moments in columns.

Obtain the factored moments in the interior and exterior coluins in each direction for
the flat plate design example. '

SULUTIOi\II {a} Exterior column, long direction {Frame A). The factored moment 3, to
be transterred to the exterior column is (ACI-13.6.3.6) 0.3M,,

M, = 0.3Mg = 0.3(38.2) = 17.5 fe-kips -

where the 58.2 fe-kips was obtained from Table 16.10.2. The moment M, is to be divided
between upper and lower coluinns in proportion to their stiffnesses (in this case, equally}.

On flat plate construction, nearly all (98.8% for Frame A and 99.3% for Frame CYof
the exterior frane moment is taken by the column strip; the arbitrary use of 0.3M, tobe
taken by the columm strip seews appropriate.

» 16.18 TR
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{b) Interior column, long direction. The fictored moment to be translerred to the
column is empirieally the wuomt obtained from ACI Formula (13-7) | Bep. 16.17.11,
M, = 0.07(0.083 4 0.058)(12)(15 — 1}* — 0,083(12)(15 — 1)2
= 0.07(0.058)(12)(14)* = 9.5 ft-kips
The moment M, is to be divided between upper and lower columns.

(c) Exterior columa, short direction (Frame C). The factored moment to be trans-
ferred is

M, = 0.3Mp = 0.3(46.3) == 13.9 ft-kips

where the 46.3 {t-kips was obtained from Table 16,10.2. The moment M, is to be divided
between upper and lower columns.

{d) Interior column, short direction. The factored moment to be transferred is
M, = 0.07(0.058}(15)(12 — 0.83)* = 7.6 ft»kips
The moment M, is to be divided between upper and lower colunins. <

16.18 TRANSFER OF MOMENT AND SHEAR
AT JUNCTION OF SLAB AND COLUMN

Inasmuch as the columns meet the slab at monolithic joints, there must be moment as well
as shear transfer hetween the slab and the column ends. The moments may arise out of
lateral loads due to wind or eartheguake effects acting on the multistory frame, or they may
be due to unbalanced gravity loads as considered in Section 16.17. In addition, the shear
forces at the column ends and throughout the columns must be considered in the design of
Tateral reinforcement (ties or spiral) in the columns (ACI-11.11). The transfer of moment
and shear at the slab-column interface is extremely important in the design of ffat plates
and has been the subject of numerous research studies [16.103-16.138, 16.143]. Particu-
larly, the current status is presented by ACI-ASCE Committee 352 in its Reconunenda-
tions for Design of Slab-Column Connections in Monolithic Reinforced Concrete Struc-
tures [16.128], and the background explanation by Mochle, Kreger, and Leon [16.127],

Let M, be the total factored moment that is to be transferred to both ends of the
columns mesting at an exterior or an interior joint, Test results by Hanson and Hanson
[16.104] bave shown that about 60% of the moment is transferred by flexure and the
remainder by unbalanced shear stresses around the critical periphery Jocated at d/2 from
the column faces. The ACI Code requires the total factored moment M, to be divided into
M., “transferred by flexure” (ACI-13.5.3) and M, “transferred by shear” (ACI-11.12.6)
such that

1
2 b
1+§\["z;2

by = critical section dimension in the longitudinal direction
¢y + dj2 for exterior columns [Fig. 16.18.1()]

Adm’) = }j’ IMH = I“af" (16.18.1)

where

I

= ¢y +d for interior columms [Fig. 16.18.1(b)]
by = critical section dimension in the transverse direction
=c+d (Fig. 16.18.1)

i
i
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Figure 16.181 Shear transfer of moment to columns.
and
My = M, - My = My{l — )_’ir) (16.18.2)

The moment M,y, is considered to be transferred within an effective slab width equal
to {ce + 3¢} at the column {ACI-13.5.3.2), where ¢ is the slab or drop panel thickness.
The moment strength for M., is achieved by using additional reinforcement and closes
spacing within the width {cz + 3t).

U by = by, Re. (16.18.1) bocomes

My, = 0.60M, o
If by = 1.5b, Eq. (16.18.1) becomes
My, = 0.648M,

It appears reasonable that when by in the transverse direction is larger than by in the
longitudinal direction, the moment transferred by flexure is greater because the effective
slab width (cz + 3¢) resisting the moment is larger. '

Because the aspect ratio bo/by affects only slightly the proportion of the exterior

support moment “transferred by flexure,” the ACI Code has simplified the procedure for
many situations,
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Simplified Procedure

For unbalanced moments about an axis parallel to the edge at exterior supports, where the
factored shear V, does not exceed 0.75¢V, at an edge suf)port, or does not exceed 0.54V,
at a corner support, ACI-13.5.3.3 permits neglect of the interaction between shear and
moment. In other words, for such situations, the full exterior moment can be considered
transferred through flexure (i.c., ¥ = 1.0}, and the exterjor support factored shear V,, can
be considered independently.

Forunbalanced moments at interior supports and for unbalanced moments about an
axis transverse to the edge at exterior supports, where fuctored shear V, docs not excead
0.4¢V;, ACI-13.5.3.3 permits increasing by as much as 25% the proportion % of the full
exterior moment transferved by flexure.

When using the simplified procedure, the reinforcement g, within the elfective
slab width defined in ACI-13.5.3.2, is not permitted to exceed 0.375p;,. The simplified
procedure is not permitted for prestressed concrete systems.

Stresses Representing Interaction Between Flexure and Shear

The moment M,, transferred by shear acts in addition Lo the associated shear force V, at
the centroid of the shear area around the eritical periphery located at d/2 from the column
faces, as shown in Fig. 16.18.7. Referring to that figure, the factored shear stress is

Vi Mty

Ty A 7. )
‘,n Myexs
tyg = = {16.18.4)
ATk

By using a section property J. analogous to the polar moment of inertia of the shear arcea
along the critical periphery taken about the z-z axis, it is assumed that there are both
horizontal and vertical shear stresses on the shear aveas having dimensions by by d in
Fig. 16.18.1. The z-z axis is perpendicular to the longitudinal axis of the equivalent
frame; that is, in the transverse direction, and located at the centroid of the shear area.

For an exterior cobnmn, x) and xa ave obtained by locating the centroid ol the clannel-
shaped vertical shear area represented by the dashed line {by + b2 + b)) shown in
Fig. 16.18.1{a}, and

Ay = (8hy) 4 baXd (16.18.5)
Xg = %ﬁ {16.18.6)

& 3
Jo=d [2%’ — (@b, +bg).«.-§] + ?-’-Gi'l?- (16.18.7)

For an interior column, referring to Fig, 16.18.1(b),
A = by + ba)d (16.18.8)
IJ’? b-vb% b]ds

= |2 2 e 16.18.9
Je (1[6+2]+6 (16.18.9)

Equations {16.18.5) to (16.18.9) are derivable by letting the shear stress at any location
resulting from M, alone he proportional to the distance from the centroidal axis z-z to
the shear areas by by d, and either (a) to the one shear area by by d {or an exterior column
as shown in Fig. 16.18.2, or (b) to the two shear areas bz by d for the intevior cohmmn.
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» EXAMPLE 16.18.1
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{a) Shear areas {b} Vertical resisting {c) Horizontal rasisting
to resist M, shear stregses shear stressos

Figure 16182 Resisting shear strosses due to My, acting on an estevior eolwon,

According to ACI-11.12.6.2, the larger factored shear stress v,e shown in Fig. 16.18.1
must not exceed the stress ¢u, = ¢V, /by d obtained from ACI Formulas (11-33) to {11-
35), that is, Eqs. (18.15.24, b, and ¢}, otherwise shear reinforcement as described in
Section 16.16 is required.

For the plate design example, investigate the transfer of unbalanced gravity load moments
in the long direction, as already computed in Example 16.17.1, to the exterior and interior
eolumns, respectively.

SOLUTION  (a) Exterior column {long direction), transfer by Hexure. From Example
16.17.1, the moment to be transferved iy

M, = 17.5 [t-kips

The factored shear V,, is taken as w, times the floor area, 12 ft x 7.5 {t, tributary to the
exterior coluni.

Vi = 0.198(12)7.5 = 17.8 kips

The nominal shear strength V;, in accordance with ACI-11.12.2.1 is the smallest of
4 4 5
Vo= [ (24 ) VTbod = (24 g A

o T 30 ¥ '
Vo= [(b{)/(f -+ 2) ﬁ;b(;d = (m +2) ff:bud} = 5.0\/}:50(]-

Ve = 4\/_72 by ) Controls!

which means

Ve = 4/ byd = 4v/4000(42.5)4.25 = = 45.7 kips
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According to ACI-13.5.3.3, the simplified procedure may be used when
[0.754 Ve = 0.75(0.75)(45.7) == 0.75(34.3) = 25.7 kipsj > [V, = 17.8 kips]
Thus, ACI permits all of the exterior moment to be taken as flexure; or
Mo, = M, = 1.0(17.5) = 17.5 fi-kips

The shear can be considered independently.

(b) Exterior column, long direction, transfer by flexure using the shear-flexure in-
teraction p rocedure. This l‘n'occdu re involves more caleulations and is more conservative

- than treating the flexure and shear independently. From Eq. (16.18.1}, using the average

effective depth d = 4.25 in, for #4 slab reinforcement,

M =y M, = _.._.,,.}_.____ M,
1 + b
by /
= 17.5 = 0.601(17.5) = 10.5 {t-kips
2 ‘/ 12+ 2.125
10 + 4.25

Asshown by Fig. 16.18.3, this moment is be carried in a slab width (ACI-13.5.3.2) equal to
the cohwmn width plus three times the slab thickness, that is, 26.5 in. From Table 16.12.6
and Fig. 16.10.3 {Frame A), the total moment in the 72-in.-wide column strip is

M in column strip = 0.988(15.1) = 15 {t-kips

_______ o 12+%=14.12“
i ]
H
10 + 3t = 26.5" L1 1040 = 1425
AN
Ep——— I
I
X,
mima e — — A s e Xy e A

t = stab or drop panel thickness

Figure 16.18.3 Transfer of moments at exterior column, Example 16.18.1.
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1f the slab reinforcement is placed at equal spacing in the colunm strip, wdditional rein-
forcement is needed in the 26.5-in. width for a bending moment of
26.5
M, — 15 (-%—) = 10555 =5 fi-lips
(e} Exterior column, long direction, transfer by eccentricity of shear using the shear-
{lexure interaction procedure. From part (a),
V, = 0.198(12)7.5 = 17.8 kips
Myy = My — My = 17.5 — 10.5 = 7 ft-kips
From Fig. 16.18.3,

 2(14.12)7.06

Xp 5 e == 4 T i,
T W T n
A, = 4.25(28.24 + 14.25) = 181 sq in,
3 [} LK)
Jo=4295 [2——-—(14‘12} - 42.49(4.70)2:| 4 14124257
3 6
= 4004 + 18] = 4185 in.*
17,600 _ 7000012)0.42 oo
Typ = o = 155 = 98 — 189 = 81 psi
17,800 | 7000012470 100 e
Ty = 150 ATos =98 -+ 84 = 182 psi

The nontinal stress limit based on strength in shear was determined in part (a) to be that
based on 4,/ f7. Thus, the limit to the above stresses is

limit v, = gu, = {4/ f7) = 0.75(253) = 190 psi

when no shear reinforcement is provided. In this example, the shear strength is il
adequate based on the shear-flexure interaction procedure,

The horizontal shear stress v, at the upper or lower edge of the two shear areash,
by d is

7000(1.2){4.25/2)
Uyl = —Tis/—-—— = 43 psi

The vy, of 43 psi, v,y of —81 psi, and v,z of +192 psi nray be drawn on a sketeh like that

of Fig. 16.18.2, and by basic statics computation of the resultant upward force should

equal V, of 17.8 kips and the resultant moment about the z-z ads should equal My, of 7
f-kips.

(d) Interior column {long direction), transfer by flexure. Investigate whether the
simplified procedure is permitted. The factored shear V, is computed as w, times the
tributary floor area of 12 x 15 ft, :

Vi = 0.198(12)15 = 35.6 kips &

Applying ACI Formulas (11-33), (11-34), and (11-35), as shown in part {a) for the exterier
colunm, will indicate that the shear strength based on 4,/F7 controls. Since the interior
and exterior columns are the same size, the ACI Formula (11-33) involving the aspect
ratio B, gives the same value as in part (a). Regarding ACI Formula {(11-34), e, is 40 for
interior columns, and

by = 2{16.25) + 2(14.25) = 61.0 in.
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Thus, ACI Formula {11-34) gives

V, = [("‘— + 2) SFbod = (,___éﬁ___ + 2) JE bad] =48/ bd

bo/d 61.0/4.25
The strength V, cannot exceed that based on 4\/ﬁ from ACI Formula (11-35). Thus,
V, = 417 bud = 4+/4000(61.0)4.25 g = 65.6 kips
Applying the simplified procedure authorized by ACI-13.5.3.3,
[0.49V, = 0.4(0.75)(65.6) = 0.4(49.2) = 19.7 kips) < {V,, = 35.6 kips]

Since the factored shear V., is not less than 0.4¢V,, the regular shear-flexare interaction
procedure must be used!
From Example 16.17.1, the moment to be transferred [compu ted by ACI Formula

13-Mis
M, = 9.5 ft-ldps

1

My, = }j’ M, =
: 1 + 2 bl
3V b

My

9.5 = (1.5584(9.5) = 5.5 fi-kips

- 2 (124 4.25
3Y 1025

From Table 16.12.6 and Fig, 16.10.3, the total moment in the 72-in.-wide colunm strip is

M in column strip = 0.75(37.8) = 28.4 fi-kips
Sinee the column strip moment in the 26.5-in. width of 26.5(28.4)/72 = 105 [t-kips is
Jarger than 5.5 fi-kips. no additional reinforcement is needed.
() Interior column (long direction), transfer by eccentricity of shear, From part {d),
the factored shear V,, is 33.6 kips.

1‘4“; - 2‘4" - a'fuh =05 - 5= 4.0 ft'kip‘{
From Fig. 16.18.1(b),

Ae = 4.25(32.30 + 28.50) = 239 sqin.
5258 14.25(16.25)° 3.95(1.25)"
1. =435 [{l(}.:.-)} + 14.25(16.25) :}+ 16.95(1.25)

G 2 6
= 17,040 + 210 = 11,250 in."
£18.12

35,600 _ 4000(12)8.12 = 137 — 35 = —102 pyi

254 11,250
_ 35,600  4000{12)8.12

e = 5g 11.250

The capacity $v, = ¢t = ¢(4\/I_f) = (.75(253) = 190 psiwhenno shear reinflorcement
is provided.

D =

= I37 4+ 35 = +172 psi

v
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» EXAMPLE 15.18.2

Again, by basic statics the sum of the factored load vertical shear stresses on the
two areas by by d plus that on the two areas by by d should add to give V,, of 35.6 kips.
Likewise, the moment of these shear stress resultants along with that of the horizontal
shear stresses on the two faces by by d should wdd up to 4.0 ft-kips. The horizontal sheur
stress at the upper or lower edge of the faces b, bydis

400002)(4.25/2) <
iLeso - obs

nh =

Moment Transfer from Flat Plate to Column When Shearheads Are Used

Tests [16.93, 16.110] have indicated that shear stresses computed for factored loads at
the critical section distance /2 from the column face ave appropriate for transfer of
My = M, — My, a5 deseribed above, even when shearheads are used. However, the
critical section for V, is at a periphery passing through points at %(Lu — ¢ /2} Trom, but
no closer than, d/2 to the column fuces, When there are both V,, and M, Lo be teansferred,
ACI-11.12.6.3 requires that the sum of the shear stresses computed for M., and V, at
thelr respective Jocations not exceed P(4/72). The reason for this apparent inconsistency
(ACT Commentary-R11.12.6.3) is that these two critical sections are in close proximity at
the column corners where the failures initiate,

Recompute the periphery length by required, located at f(Lu —¢1/2) but no closer than
72 from the column face for the shearhead in Example 16.16.2 whea there is unhalanced
moment at the interior column equal to that of Eq. (16.17.1}, AC1 Formula {13-7).

SOLUTION (1) Determine whether or not additional reinforcement is necessary for
moment transfer Heferring to Example 16.16.1, part (a) of solution,

16, = 387 psl
Referring to Example 16.16.2, part (d) of solation,
column strip moment in long direction = 55.4 ft-kips

The moment to be transferred to the colamn is, using Eq. (16.17.1),

M, = 0.07[(0.083 4 0.152)(12)(15 — 1) — 0.083(12)(15 — 1)2]
= 0.07(0.152)(12)(14)° = 25.0 fi-kips

Column strip moment in 26.5-in. width of F ig. 16.18.4 i

26.5 . .
554 (—?2—') = 20.4 fr-kips

Additional reinforcement is needed 1o take (25.0 — 20.4) = 4.6 fe-kips within the 26.5-in, :
width unless 25.0/55.4 = 45% of the total column strip reinforcement is concentrated in
the 26.5-in. width,

{b) Compute factored load shear stress at cxitical section of Fig. 16.18.4 due to M,,
only. Referring to Example 16.18.1, part {d} of solution,

Myp = 0.584 M, = 0.384(25.0) = 14.6 ft-kips
My, = 25.0 - 4.6 = 10.4 {t-kips

b 16.1€
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Figure 16,184 Transfer of moments in the long direction at interior colunin, Examples 16.18.1
and 16.18.2,

Using critical section properties in Example 16.18.1, part (d) of solution,
o = 10,400(12)8.12
‘7 11250

(e} Compute the reguired periphery by. Referring to Example 16.16.2, part (b) of
solution,

= 90 psi

387[180 — {(by/4)%] _

Q06) = [90 {» " L
${4+/4000) = [90 from part (b)] + i15) =
Neglecting the (be/4)* in the numerator,
_ 38T080) |
b= ooty # = AR

Placing by = 14.1 ft in the numerator and solving {or by again
387[180 — (3.53)%] _
100(4.12}

(d) Discussion. This example is for illustration of the procedure only. Actuatly, when
the service live Joad is increased from 60 ps{in the original flat plate design example
to 140 psf, the slab thickness of 5 in. would have to be increased if the spans are not
reduced. The requirement of ACI-11.12.6.3 is expected to be more controlling for the
shearhead in the exterior column. «

16.19 OPENINGS AND CORNER CONNECTIONS IN FLAT SLABS

When openings and corner connections are present in flat slabs floors, designers must
make sure that adequate provisions are made for them. The ASCE-ACI Joint Task Com-
mittee [16.83} has summarized available information, Tests by Roll, Zaidi, Sabnis, and
Chuang [16.79] have provided additional data for treating openings, while Zaghlool and
de Paiva [16.107, 16.108] have provided data for corner connections.

ACI-13.4.} first proscribes in general that openings of any size may be provided if
it can be shown by analysis that all strength and serviceability conditions, including the
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limits on the deflections, are satisfied. However, in comnon situations (ACI-1343)2
special analysis need not be made for slaly systems vot having beanys when (L} upenings
are within the middle half of the span in each direction, provided the total amount of '
reimforcement required for the panel without the opening is maintained; (2) openings
in the area common to two column strips do not interrapt more than one-eighth of the
column strip width i either span, and the equivalent of reinforcement interrupled i
added on all sides of the openings; (3) openings in the area common to one colunn strip
andt one middle strip do not interrupt more than one-fourth of the reinforcement in either
strip, and the equivalentolreinforcementinterruptedis added on all sides of the openings.

In regard to nominal shear strength in two-way action, the eritical section for slabs
without shearhead is not to include that part of the periphery which is enclosed by radil
projections of the openings to the center of the column (ACI-11.12.5). For slabs with
shearhead, the critical periphery is to be reduced only by ane-half of what is cut away by
the radiial lines from the center of the cohnms to the edges of the opening. Some eritical
sections with cutaways by openings are shown in Fig. 16.19.1.

Opening ‘l: :
r-—-r Ineffective :
e = == - |
' | | | 5
sl
I 7 {typical] ! 3
Lo b 3
Critical section '8
{a} {b)

T Regard as

i free edge
|
: Figure 16.19.1  Effect of openings and
| free edges on eritical periphery of
two-waty shear action.
(c) {d) (From ACI Commentary-1R11.12.5.}

5 16.20 FQUIVALENT FRAME METHOD FOR GRAVITY AND LATERAL LOAD ANALYSIS

For gravity load analysis the “equivalent trame method” preseribed by the ACI Cude
) differs from the “direct design method” only in the way by which the longitudinal moments
! along the spans of the equivalent rigid frame {as defined in Section '16.2) are obtained. In
either method of analysis, the transverse distribution of the longitudinal moments may be
carried out as described in Section 16,12, except in the case of the two-way slab supported
on beamns, where the beams must be snfﬁcieutly stiff (limitation No. 6 of the direct design
nfc;thod discussed in Section 16.7) (ACIL-13.7.7.5) to serve a5 boundary supports for the
slab. .

When lateral (wind) load needs to he considered, an elastic analysis must be made of
the structure under lateral loac anc the results combined with those due to gravity load,

Consistent with the tradition under ACI Code of using an equivalent frame for gravity load E
analysis, a logical extension is to use an equivalent frame approach to lateral Joad analysis. E 1
ACI-13.5.1.2 does not prescribe an equivalent frame method for lateral load analysis,
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but only requires taking into account “effects of eracking and reinforcement on stiffness
of frame members.” It is suggested in ACI Commentary-R13.3.1.2 that one-quuter to
one-half of the uncracked bending stiffness may be appropriate.

The maximum positive moments (and reversals) within the span and negative mo-
ments at the supports should be obtained for varions combinations of gravity load patterns
with Jateral load as indicated by ACI-9.2. When the equivalent frame method is used for
gravity Joad analysis of two-way floor systems meeting the limitations of the direct design
methad, the computed moments may be reduced such that the absohute sum of the pos-
itive and average negative moments is at [east equal to the total static moment w, Ly L2/8
(ACL-13.7.7.4),

The elastic analysis for the equivalent rigid frame is treated separately in Chapter 17.
In this section, considerations ace given to the determination of the flexural stiffnesses
of the columns and of the slab-beam within the width of the equivalent rigid frame,
the torsional stiffness of the transverse beam, and the fixed-end moments due to gravity
load. These values are the required input data for the analysis procedure presented in
Chapter 17,

Torsional Stifiness of the Transverse Beam

The structure enclosed between the two parallel centerlines of two adjacent panels in a
multistory two-way floor system is a three-dimensional structure. The equivalent rigid
lrame described in Section 18.2 approximates the three-dimensional structure by a series
of two-dimensional ones. But the coluns stand on or pravide support lor only asmall
portion of the width of the equivident rgid frimne. Henee, either the colunn stiffhess
has to be spread thinly over the entire width (denoted by La) of the equivalent rigid
frame, or the slab-beam has to be shrank to the narrow trangverse width (denoted by
e:2) of the cohunns. Corley, Sozen, and Siess [16.26] first developed the iden of attaching
a torsional member o the celim (a cotiwvay Nrom the three-dimensionat stracture) in
the transverse direction and in essence shifling the flexural stiffness of the slab-beam
to the end of the rorsional member away frew the columns (see Fig. 17.3.1). Thus the
effectiveness of the column to restrain the ends of the slab-beam is reduced; hence the
name of a less effective “equivalent column.” As shown by Fig, 16.20.1, under gravity
loading, the restraint at the column is more like a fixed end to the slab-beam but the
yestraint away from the column tends to approach that of a simple support.

Corley and Jirsa [16.27) developed & formula for the torsional stiffaess K, of the
attached torsionai member so that results of the equivalent frame analysis are close to
those of tests, as follows [AC] Commentary-R13.7.5}:

ak..C I
K=y, G (i) (16.20.1)
I
Lo(1-2) ™"
? ( Lz)
in which
C = torsional constant of the transverse beam (see Section 16.11)
Eq = modulus of elasticity of slab concrete
I, = moment of inertia of slab over width of equivalent frame
T4 = moment of inertia of entire T-section (if s0) within the width of the equiva-
lent rigid frame
Lz = span of member subject to torsion

oy, cs = defined as in Fig, 16.20.1

i

The summation sign is for the transverse spans (denoted by La) on each side of the
column,




6950 .

Chapter 16. Design of Two-Way Floor Systems

¢ of panel

I\J;’
J

§,

Rotation equals
column
rotation

N )

—
N

Rotation
more than
|
column
rotation % i v (
LAl
AR va
e |
/4 . | lf |
,{/ / 2 f ¢ of panel
yo s [ - 4
/s E =
A s l Slab thickness, ¢
I Cross-section
7 MAxis of ¢ of torsional
rotation f /J :1_[‘— ™ member
Vi o t
/ o

Section A-4
Figurs 16.20,1  Attached torsional member for the cohumms,

The parameter K, is the most influential parameter to relate results of the thearetical
elastic analysis to those of tests {or gravity (or Jateral} load. As test results become more
available, especially for lateral load, the coefficient “g" in e (16.20.7) might be aciusted
in the future.

Treatment of Flexural Element Having Varjalile Moment of Inertia

The flexural stiffness of a fexural element i having variable moment of inertia can be
expressed by two near-end stiffaesses S; and Sy and a cross stifiness Sy. Tn applying the
moment distribution method, the earry=over [actor from i 1o 718 83/85 and the carry-over
factor from j to i is Sy/Sy. In applying the matrix displacement method the elemen
stiffness matrix [$] is

S1={% 1 Gnwhih s, = g (16.20.2)
St 8
In applying the slope deflection method {16.11},
M; = My + 56 + Syfjj — (S + SyIR (16.20.3)
I\fj = ﬂfoj -+ 3};9,‘ -+ S:(iej - (S,',' -+ SJJ}R

in which Mo; and My; are the fixed-end moments, &; and 6; are the slopes at ends { and |
of the fexural element, md R is the clockwise rotation of the elewent s,
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The column analogy method may be the best way to compute the fixed-end moments,
the near-end stiffnesses Sy and Sy, and the cross stiffness S or 5 of a flexural element
having variuble moment of inertia, thus avoiding using the flexibility analysis (or pin-end
rotations due to applied loads or unit values of end moments, Wang[16.11] has presented
a description of this method, as well as the elastic analysis of rigid frames hy moment
distribution, slepe deflection, and matrix displacement methods.

There are tables available for fized-end moments and Bexural stiffness values for

" slabs having various combinations of column widths, column capitals, and drop panels

[16.9, 16.10, 16.139]

Flexural Stiffness of Columns

ACI Commentary-R13.7.4 states that the height of the column is to he meusured from
middepth of slab above to middepth of slab below, as shown in Fig, 16.20.2, The moment
of inertia is to be taken as infinite from the top to the hottom of the slab-beam at the joint
(ACI-13.7.4.3). In flat slabs having column capitals, the authors suggest that the 1/T value
be assumed to vary linearly from zero at the top to its value based on gross cross-section
at the bottom of the capital.

Flexural Stiffness of Slab—Beam

ACI-13.7.3.3 states that the moment of inertia of slab-beams from center of column to
face of colunm, bracket, or capital shall be assumed egual o that of the slab-heam at
face of colunmm, bracket, or capital divided by the quantity (1 — eaflal, where ¢z and
L are measured transverse to the direction of the span in which the moments are being
computed. Although ACI-13.7.3.1 permits the use of gross concrete area for computation
of the moment of inertia in gravity load analysis, at the same time ACI-13.5.1.2 requires
taking into account the effects of cracking and reinforcement in Jateral Joad analysis.
When computers are used, Joadings for different gravity load patterns to be combined
with fateral Joad can be listed! together in an input load matvix; thus, it would be convenient
to use only one set of assumptions for flexural stiffness properties, especially in the final
analysis after the finished design.

There is not definitive agreement on what constitutes the appropriate assiumptions
for stilfness, either for gravity Joad analysis or lateral load analysis. For gravity load
analysis, the use of gross section is reasonable because it is the simplest assumption andd
the results are acceptable. For lateral load analysis, particularly for the unbraced frame
where the entire lateral resistance is provided by the flexural stiffness of the slab-beams
and columns, the use of gross section for stiffness overemphasizes the resistance to lateral

== 3 - -4

1 .
7= linear variation

— e rreede

Constant [,

Fiqure 16.20.2 Basis of caleulation of column sdiffness.

A
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» EXAMPLE 15.20,1

loads. in Chapter 17, devoted to the analysis of two-way floor systems, several aralytical
models are presented for possible use m leteral load analysis, or in combined graity
and lateral load analysis. For an extended discussion of lateral load analysis, the reader
should consult the study by Vanderbilt {16.32), Perhaps the acceptance of an equivnlent
beam or reduced beam method of analysis would make possible the use of gross section in
Iateral load analysis. In 1995 Luo and Duyrani [16.140, 18.141] developed formulas for the
effective stab width as functions of column and slzb aspect ratios and the magpitude of the
gravity load; the proposed model was based on coordination with 40 previous test results,

Arrangement of Live Load

When there is a definitely known load pattern, of course, analysis should be made forit
(ACI-13.7.6.1). When service live load does not exceed $ of the service dead load, analysis
needs to be made only for full factored dead and live load on all spans {ACI-13.7.6.2).
When load patterns in accordance with influence line concepts are used, only % of the
full factored Jive load needs to be used (ACI-13.7.6.3); however, factored moments used
in design should not be less than those due to full factored dead and live loads on
panels (ACI-13.7.6.4).

Reduction of Negative Moments Obtained at Column
Centerlines from Structural Analysis

Negative moments obtained at interior column centerlines may be reduced to the face 3
of rectilinear or equivalent square {for eircular or polygon-shaped supports) SUpports
but not greater than 0.175Ly from the column centerfine (ACI-13.7.7.1). For exteriur
columns, having capitals or brackets, recuction of negative moments can be made only
to a section no greater than halfway between the face of column and edge of the capital
or bracket (ACI-13.7.7.2).

Deflections

When the deflection must be caleulated {or a two-way slab systemn, the ACI Code (ACL-
9.5.3.4} provides little guidance other than that one should take into account “size and
shape of the panel, conditions of support, and nature of restzaints at panel edges.” The
effective moment of inertia 1. [Eq. (144.1)] is required to he used in such caleulutions. .
Although a number of techniques have been proposed [16.52~16.71], adoption of the  §
equivalent frame concept seems to have the most promise of being relatively simple to _
apply and giving reasonable results. This equivalent frame application has been developed
by Nilson and Walters {18.53] for essentially uncracked systems and extended by Kripa-
harayanan and Branson [16.55] for partially eracked load ranges. More recently, Scanlon g
etal. [16.58, 16.63, 16.65, 16.66, 16.68, and 16.70] have treated the subject in detail, E
Itis noted that the equivalent frame method was originally derived to be used with ' F
the method of moment distribution. The method, however, can Jbe also be used with
other analysis procedures (e, &, matrix displacenient method [16.11]) and standard frame
analysis computer programs by specifying appropriate valies for the stiffness of the slab-
beam, colnmn, and torsional clements as disenssed in Chapter 17.

Assuming the equivalent frame method is to be applied to the two-way slab (with beams)
design exanple deserihed in Section 16.3, obtain the stillbesses necessary [or the analysis
of the equivalent rigid frames A, B, C, and D as shown by the notations in Fig, 16.35.
Also obtain the fixed-end moments lor gravity load and the warry-over factors COF to he
used with the method of moment distribution,

SQLUTION (a) Compute flexure properties of slab-beam, The variations in the moment
of inertia of the slab-beam in the long and short directions are shown in Fig. 16.20.3, For
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{z) Long slab-beam (b} Short slab-beam

Figure 1620.3 Flexure properties of stab-heam in two-way slab (with beams} design example.

the long slab-beam, the ratio of moment of inertia between the center and the face of
the column to the moments of inertin of the rest of the span is 1.0/1 —~ 15/2407 = 1,138,
andd it is LOAL — 15/300)* = 1.108 for the short slab-heam (AC)-13.7.3.3). The stiffness
K, carry-over factor COF, and fixed-end moment FEM coefficients may be computed by
the column analogy method [16.11]. The variation in the width of the analogous column
section is I/1, as shown in Fig, 16.20.3.

For the long direction, the arez and moment of inertia of the analogous colurn
section [see Fig. 16.20.3(a)] are

A = 23,75 + 2(0.879)(0.625) = 23.75 + 1.10 = 24.85
I= -112-(2.'.’3.'?'5)‘3 + 1.10(12.1875)* = 1116 + 163 = 1279

. I Me
stiffness factors; = L (—A- + T)

25 + 25(12.5)%
24.85 1279

M 13
st;ffness factorsy =L (.....9. - _)

3y = = 1.006 + 3.054 = 4.08

I A
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sy = ~(1.006 — 3.054) = 2.05
cor = 295 _ 0.505
408 0

load on analogous column for uniform load (w=1.0)

2

= £(78.1 — 7.6)(23.75) + 7.5(23.75) + 0.879(7.6)(0.625)
= 1116 + 180 + 4 = 1300
1300 1300
PTE N afficient = — = 0.084
FIEM coeflicient 518503 ~ 34.55(655)

For the short direction, referri ng to Fig. 16.20.3(),

A = 18.75 + 2(0.902)(0.625) = 18.75 + 1.13 = 19.68

I'= (8,757 + 1.13(0.6875)% = 549 + 106 = 655
20 20(10)2 .

S = e b el | 006 4 3.053 = 4.06

M oss T e o

s = —(1,006 — 3.053) = 2.05

2.05

SOF = = == (1,50
COF = =55 S

load on analogous column for uniform load {w =10

2

= 5(50 — 6.05)(18.75) + 6.05(18.75) + 0.902(6.05)(0.625)
= 349 + 113+ 3 = 665

FEM coefficient = ——m oo w202 0.084

The flexural stiffness of the slab-beams infwmes A, B, C, and D are, using the 1,
vafues shown in Fig. 16.20.4,

_ 4.06E(66,540)

Frame A, Ky = 300 =801E
FFrame B, Ky = 4'06%‘3(?;'730) = T8LE
Fravww: C, Koy = iﬂw%%}fﬁp—) = GEYE
Frame D, Ky = f-oi%%‘?ﬁg—{-)z = 5751

Note that the moment of inertia values used above are based on the gross cross-sections
as shown in [ . 16.20.4, an acceptable procedure for gravity load analysis. These stiffiess
values are likely to be too high for lateral load analysis, since cracking reduces flexural
stiffness. ACI-13.5.1.2 states that for lateral load analysis, effects of cracking and rein-
forcement must be taken into account,

(b) Compute flexure properties of cohmmns, The variations in the moment of inertia of
the column section in the long and short directions are shown in Fig. 16.20.5. The stiffness
coefficients and carry-over factors may be computed by the column analogy method.

For the long direction, refersing to Fig. 16.20.5(a),

A=9.67, I=£9677=753

12 2(6.90)%
__+1(690)

MESE T TS

= 1.24 -+ 7.50 = §.83
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— "9(7.6)(0.695)

19.88
655
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Figure 16204  Slab-Deam cross-sections in bwo-way shib (with beams) design example.

21205100
967 | 753
12 12(6.90)5.10)
967 75.3

= 1.24 +4.15 = 538

Sup =

Srp = Spy = I: ] = —}24 45,60 =437

{COF)yp = 237 = (}.495

8.83
4,37
OF) g = e = 0.81]
{COF) 4y 5%
EI  S83E{15Y/12
stiffness at top, Ker =s';~;-—£;: = “m“ﬁ:&_/—- = 259F
EI  B39E(15)/12 .
stifThess at bottom, Kes -—"-S';;BT = --————](4—:-12—[— = 158K

For the short direction, referring to Fig. 16.20.5(b),

A=1000, T=4(100° =833

12 12(6.73)°

ST= Tt TEE

12 1EaT?
=t s

12 12(6.73X5.27)

Syp = spr = - l:'i"("; T

3.91
(COF}yp = 2o = 0506

fof-3

=120+6.53 =773

= 1.20 + 4.00 = 5.20

:| = =120 4511 =391
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{b) Column section In short direction {for frames C and D)
Figure 16205 Flexure propestics of columms in two-way slab (with beams) design example.
3,91
JOF) gy == e = 0.752
(COF)gy 5356 5
T.73E(15Y1/12 )
titlness at top, Kup = —————"" """ — 996F
stiffness at top, Ky i
. B.20(15¥ /12 e
stiffness at bottom, K.y = ———(iz;)-z-—— = 152K

» EXAMF

(c) Compute torsional stiffness of transverse torsional members. The torsional con-
stants C for the transverse members shown in Fig. 16.20.6 are taken from Example
16.11.1. The values for the ratio of I, to I, needed to increase the torsional stiffess X,

[Eq. (16.20.1)] for each direction are shown in Fig. 16.20.4.
For Frame A, using Iy /I, = 12,12 for 14 = 21.5 projection below 240 x 6.5 slal,

" _1BE(10,700) - : -
exterior K, = TR 15/240)3(],2.12) = 9T4E(12,12) = 11,8008

_ 18E(11,930) .
ntetior K, = o —157aa0p (12-12) = 1086E(12.12) = 13,200E




! design example.

3

5. The torsional coati iR
aken from Esamﬁ*”
torsional stiffness ﬁﬁ
: REL) 5
: Rl
aw 240 x 8.5 Slai;:' 2

e
£

L 11LS00E

= 13.200F
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Figure 16.20.6 Torsional constants in two-way stab (with beams) design example (from Example
16.11.1).

For Frame B, using Ly/I, = 19.84 for 14 x 21.5 projection below 127 x 6.5 slab,

exterior K, = 487E(19.84) = 9660E
interior K, = 5423E(19.84) = 10,800F

For Frame C, nsing Ig/l; = 5.75 for 12 x 17.5 projection below 300 x 6.5 slab,

o 18E(19,100) .. _ v
exterior K = 0001 = !5/300)3(5.15) = 1340E(5.75) = T700E
I8E{20,700)

interior K, = (5.75) = 1450E(5.75) = 8340E

300(1 - 15/300)
For Frame D, using /I, = 9.52 for 12 » 17.5 projection below 156 x 6.5 slab,

exterior K, = 670E{9,52) = 6380F
interior K, = 725E{9.52) = 6900E <«

Assuming the equivalent frame method is to be applied to the flat slab design example
described in Section 16.3, obtain the stiffnesses and carry-over factors necessary for the
analysis of equivalent rigid Frame A in the long direction. Also obtain the fixed-end
maoments for gravity load.

SOLUTION (a) Compite flexure properties of slab strip. The stiffnesses, camry-over fac-
tors, and fixed-end moments may he determined by various analysis methods. The column
analogy method [16.11] is used in this example., Simmonds and Misic [16.9] have provided
design aids to meet the ACI Code assumptions of the “equivalent frame method.”

Thé variation in the moment of inertia along the interior span of the slab strip is
shown in Fig. 16.20.7(a). Taking the moment of inertia through the 7;',_--in. slab as the
reference value of 1, the moment of inertia through the drop, where there is a T-section
of 2240 x 7.5 in. flange and an 84 x 3in. web, is 1.745. The moment of inertia between
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Figure 16207 Floxure properties of stab strip in (ha sl dlesign example,

the column eenterline and the face of the e
4.43/207 = 1.745/0.605 = 2.88,

The variation in the width of the

Fig. 16.20.7{h). The aren of the an

quivalent square colimn capital is 1.743/(1 -

analogous cohumm section is 1/7, which is shown int
alogous column section s

A = 16.66 + 2(0.573)(1.96) + 2(0.347)(2.21)
= 1666 +2.25+153 = 20.44
The moment of nertia about the mids

pan, neglecting the moments of inertia of the short
segments about their own centroidal aves, s

I =3(16.66)° + 2,259,317 + L53(1140)2 = 385 + 195 + 199 = 779

. 1 Me 1 12.5(12.5)
5 f 388 It - 22l e e — —
stiffness fuctor s = 1 ( 3 4 ) 25 [ 0.7 779 ]




Jength

capital is 174541

4, whicly is shown

199 = T
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5 = —1.22 4+ 5.01 = 3.79
3.79
COF = o = (.60
g =008
9a Tl B3 113
stiffness X at end of 20-ft-wideslab s trip = mG'ZSEm--—-—é:}f) / 12(24,0) = 175E

The load on the analogous column is equal to the summation of the product of
the width of the analogous column sectien and the area of the simple beam moment
diagram of Fig, 16.20.7(c). Considering the moment areas over the short segments as
being trapezoidal, the load on the analogous column is

P = (78,1 ~ 43.5)(16.66) + 43.5(16.65) + 2(0.573)(1)(43.5 + 25.2)(1.96)
+2(0.347)(1)(25.2)(2.21)
= 384 + 725 + 77 + 19 = 1205

FEM coefficient = _:?_._ 1205 = (.0543

AL® T 20.44025)

Since the edge columm capital is almost equal in size to the equivalent square of the
interior column capital, the FEM coelficient, stiffiess, and carry-over factor obtained
above for the interior span will also be used for the exterior span.

(b) Compute Bexure properties of colunms. For the interior column, the length is
measured hetween the centerlines of slab thickness, as shown in Fig. 16.20.8(a}. The
moment of inertin is assumed to be infinite from the top of the slab to the bottom of
the drop panel, and then the 1/7 value is taken to vary linearly to the base of the column
capital.

The 0.188L of the analogous column representing the cohwnm capital is divided into
four parts, AL = 0.188L/4, with 1/T of 1/8, 3/8, 5/8, and 7/8.

A = 0.7251, + (% +3.5, i) (o.Lzsr,) = 0.8197,
kY [

8 8§ 8

3 3 7
—(0.080L) + g((). 126L) + ;;;{0.3741.) + ;;{0.2201,)]

> Ay from top = 0'1251" [l

8
4+ 0.725L(0.6065L) = 0.4566L2
0.456612
7 fromtop = —(-)—-g—f;\-;z- = (L5581
7= -1-15(0.7%1,)3 + 0.725L{0.04851.)2

0.188L 1 . 3 , 5 P
ZUO4TEL)E 3 S(0.43210F + =(0.384L + (0338 L)
: [S«msn + 2043 + 203ULP + )]

= 004717

The stilfness factors at the top and hottom are

oo L 05582
T 0819 T 0.0471

1 (04422
Spy = e =122 44,15 =53
88 = 5575 T 00471 =

=122 4 6.61 = 7.83
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for whieh, the stiffiressas are

o T 7 4
Kqy= syplr - 7.831?{';0(9) /4 = 336E

SppEl 5.371?.‘22‘(9)"/4
Kp = ‘-Z--- = %D = 230F

The CuTY-over factorg are

0.558(0.442)/(0.047}.)- L22 400 -
(COF)T:J = ‘% = '7—,§-§ = (.53

4.02
(COP}J:T = 55 = 0.749

(33




16.20 Equivalent Frame Method for Gravity and Lateral Load Anzlysis = 701

For the exterior column [Fig. 16.20.8(h)],

A--()742L+(i 3 5 g) (Jl71L

= (.827L
8+§ ) 0.827L

1711
Ay from tc}p--——-—-——-{ ={0.077L} + ((3320L)+ (01(‘3L)+ (0 70(1,:|

-+ 0.742L(0.598L) = (.4581L°2

0.4581L*
mf == e == [}, 55! Tt
i from top 087TL 0.5551

1
[ = m(0.742L)3 +0.742L{0.044L)*

g l;”‘ [ (0.477LY + = (o 4341 4 = (o 391L + 7(0 348LY ]
= (0.048213
Spy = (—]-;:—?:-7- + %’—:gg =121 +4.13 = 5.34
Kp = SnI;EI _ 7.533;213)"/12 .
Koy = sﬂ,l;EI N 5.34E}F§g)4 N2 _oer
The carry-over factors are
(COFlrg = 0.554(0.446;/;){.30482 ~121 _ 3_2% 0517
(COF)pr = ?g%% = 0.734

(e) Compute torsional stifTress of transverse torsional members, From lixample

16.11.2,
C {edge beam) = 18,500 in.*
€ (interior beam} = 9800 inJd

For the two members, one framing in from each side,

Pl 0 O 3
K ledge) = 29E)C 5 = "(JL)(“:(;O) = 2980E
co P &0
I.a (1 - Lg) 240 (I 20)
919800
K, (interior) = m-g-g--l-‘—z-ém—-— = 1560E

4.43
2 (1Y )
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FIGURE 13.33 e—
Transfer of moment from v
slab to columnu: (a) forces
resulting from vertical load
and unbalanced moment; Ve
(b) critical section for an ' A P T
interior column; {c) shear T —“’( ;_M c < :[d
stress distribution for an L ¥ Y R Jmp— A !
interior column; {(d) critical
section for an edge column;
{¢) shear stress distribution - Ar
for an edge column.
(a) l
by=cq+d
] W
T
T !
ba=cot+d oo | ! E
| I
| |
h SR S
L Cp = Cf ——}
(b) {c)
b1 = 04 + '2d"‘
l Vr
—— -
5 [ ’
]
T | /
b2 =Co + o Co i [
.
3 I
/L Cy —7/ Cr L
f— Cl —ate c."
(d) (e}

The situation can be modeled as shown in Fig. 13.33a. Here V, represents the
total vertical reaction to be transferred to the columsn, and M, represents the unbal-
anced moment to be transferred, both at factored loads. The vertical force V,, causes
shear stress distributed more or less uniformly around the perimeter of the critical
section as assumed earlier, represented by the inner pair of vertical arrows, acting
downward. The unbalanced moment M, causes additional loading on the joint, repre-
sented by the outer pair of vertical arrows, which add to the shear stresses otherwise
present on the right side, in the sketch, and subtract on the left side.




ANALYSIS AND DESIGN OF SLABS 479

Tests indicate that for square columns about 60 percent of the unbalanced
moment is transferred by flexure (forces T and Cin Fig. 13.334) and about 40 percent
by shear stresses on the faces of the critical section (Ref. 13.24). For rectangular
columns, it is reasonable to suppose that the portion transferred by flexure increases
as the width of the critical section that resists the moment increases, i.e., as ¢, + d
becomes larger relative to ¢, + d in Fig: 13.335. According to ACI Code 13.5.3, the
moment considered to be transferred by flexure is

My = v, (13.164)

where
1

1+ 3V,
and b; = width of critical section for shear measured in direction of span for which

moments are determined
b, = width of critical section for shear measured in direction perpendicular to b,

£/ (13.165)

The value of ¥, may be medified if certain conditions are met: For unbalanced
moments about an axis parallel to the edge of exterior supports, ¥, may be increased
to 1.0, provided that the factored shear V, at the edge support does not exceed 0.75¢V,
or at a corner support does not exceed 0.5¢V,. For unbalanced moments at interior
supports and about an axis perpendicular to the edge at exterior supports, ¥, may be
increased up to 1.25 times the value in Eq. (13.165), provided that V, =< 0.4¢V_.In all
of these cases, the net tensile strain €, calculated for the section within 1.5% on either
side of the column or column capital must be at least 0.010.
The moment assumed to be transferred by shear, by ACI Code 11.11.7, is

My = (1= y)M, = v.M, (13.16¢)

It is seen that for a square column Egs. (13.164), (13.16b), and (13.16¢) indicate that
60 percent of the unbalanced moment is transferred by flexure and 40 percent by
shear, in accordance with the available data. If b, is very large relative to b,, nearly all
of the moment is transferred by flexure.

The moment M, can be accommodated by concentrating a suitable fraction of
the slab column-strip reinforcement near the column. According to ACI Code 13.5.3,
this steel must be placed within a width between lines 1.5k on each side of the column
or capital, where % is the total thickness of the slab or drop panel.

The moment M,,, together with the vertical reaction delivered to the column,
causes shear stresses assumed to vary linearly with distance from the centroid of the
critical section, as indicated for an interior column by Fig. 13.33¢. The stresses can be
calculated from

=
ka

v
=t 13.17a
AT ( )
V. M, c
=& 8T 13.17b
v, A 2 ( )

where A, = area of critical section = 2d{(c, + d) + (¢, + d)]
¢, ¢, = distances from centroid of critical section to left and right faces of sec-
tion, respectively
J, = property of critical section analogous to polar moment of inertia
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